
CMSC 754: Spring 2020 Dave Mount

CMSC 754: Final Exam

Throughout, unless otherwise stated, you may assume that points are in general position. You may make
use of any results presented in class and any well known facts from algorithms or data structures. If you are
asked for an O(T (n)) time algorithm, you may give a randomized algorithm with expected time O(T (n)).
Total point value is 100 points. Good luck!

Problem 1. (30 points) Give a short answer (a few sentences at most) to each question. Except where
requested, explanations are not required.

(a) (3 points) You are given four points a, b, c, d in R2. Using just orientation tests, show how to test
whether these points are the vertices of a convex quadrilateral listed in counterclockwise order.

(b) (3 points) In the plane-sweep algorithm for line-segment intersection, we were meticulous in
deleting intersection events from the priority queue whenever the two segments generating this
event were no longer consecutive on the sweep line. Why did we do this?

(c) (3 points) Let P be a simple polygon with n sides, where n is a large number. As a function of
n, what is the maximum number of scan reflex vertices that it might have? Draw an example to
illustrate.

(Hint: Recall the definition from Lecture 5. No proof is needed. It is okay if your answer is off
by a constant additive term. For full credit, the multiplicative factor on n should be tight.)

(d) (3 points) We claimed that the worst-case depth of the point-location data structure based on
trapezoidal maps is Ω(n). Draw an example of a set of line segments and an insertion order for
these segments such that the depth of the point-location data structure is Ω(n). (It should be
clear how to generalize your example to work with arbitrarily large values of n.)

(e) (6 points)

(i) Define the zone of an arrangement of lines in the plane.

(ii) State the Zone Theorem.

(iii) What was the importance of the zone theorem in our algorithm for building line arrangements
in the plane?

(f) (12 points) Consider the simplicial complex shown in Fig. 1(a), consisting of four 0-simplices
(0, 1, 2, 3), five 1-simplices (01, 03, 12, 13, 23), and two 2-simplices (013, 123). Consider the 1-chains
c1 = {01, 12, 23} and c2 = {12, 13, 23} (see Fig. 1(b)).

(a) (b)

0 3

1 2

0 3

1 2

c1c2

Figure 1: Chains in a simplicial complex. Recall the definitions from Lecture 18.

(i) Express c1 and c2 as 0-1 vectors over the basis 〈01, 03, 12, 13, 23〉.
(ii) Express c1 + c2 as a 0-1 vector over this same basis.

(iii) What is the chain c3 such that c1 + c3 = c2? (Express it as a 0-1 vector over this same basis.)

1

http://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect05-triangulate.pdf
http://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect18-topology.pdf


(iv) What are the boundaries of c1 and c2? (Hint: Each is a 0-chain, which can be expressed as
a 0-1 vector over the basis 〈0, 1, 2, 3〉.

Problem 2. (10 points) You are given three n-element point sets in R2, R = {r1, . . . , rn}, called red,
G = {g1, . . . , gn}, called green, and P = {p1, . . . , pn}, called purple. For each of the following two
problems, present a reduction to linear programming in a space of constant dimension. Indicate which
variables are used in the LP formulation, what the constraints are, and what the objective function is.
Indicate what to do if the LP returns an answer that is infeasible or unbounded (if that is possible).

(a) (5 points) A (linear) slab is a region of the plane bounded by two parallel lines, y = ax+ b+ and
y = ax+ b−. Given R, G, and P , compute the slab (if it exists) of minimum vertical height such
that all the points of R lie strictly above the slab, all the points of G lie within the slab, and all
the points of P lie strictly below the slab (see Fig. 2(a)). If no such slab exists, you should detect
and report this.

(a) (b)

y = ax + b+

y = ax + b−

y = ax2 + bx + c+

y = ax2 + bx + c−

Figure 2: Linear and parabolic slabs.

(b) (5 points) A parabolic slab is the region of the plane bounded between two “parallel” parabolas,
y = ax2 + bx + c+ and y = ax2 + bx + c−. Given R, G, and P , compute the parabolic slab of
minimum vertical distance such that all the points of R lie strictly above the slab, all the points
of G lie within the slab, and all the points of P lie strictly below the slab (see Fig. 2(b)). If no
such parabolic slab exists, you should detect and report this.

Problem 3. (25 points) You are given two sets of points R and B in R2 (called red and blue, respectively).
Let n denote the total number of points in both sets. Let us assume that the point sets are disjoint,
that is, R∩B = ∅. Given an arbitrary point q ∈ R2 (not in R or B), we color it (red or blue) depending
on whether its closest point in R ∪ B is red or blue. (In Fig. 3(a), q is colored red, since its nearest
neighbor is red). If q is equidistant to its closest points in R and B, it may be assigned either color.

(a) (b)

BR

q

B′
R′

q

Figure 3: Coloring queries via nearest neighbors and compatible subsets.

2



(a) (5 points) Present a data structure with O(n) storage which is given R and B as inputs, and
answers the following color queries: given any q ∈ R2, return q’s color. It should be possible
to build your data structure in O(n log n) time, and it should answer queries in O(log n) time.
(Hint: Don’t do this from scratch. Combine structures we have seen in this semester.)

(b) (5 points) In some applications, n may be extremely large, and so it is desirable to reduce the
sizes of R and B as much as possible. We say that two subsets R′ ⊆ R and B′ ⊆ B are compatible
with R and B if every point q ∈ R2 is assigned the same color with respect to R′ and B′ that it
would have been assigned with respect to the original sets R and B. (We have removed all the
points marked with “×” in Fig. 3(b). Observe that point q is still correctly colored by its nearest
neighbor in the reduced point set.)

Present an efficient algorithm that, given R and B as input, produces the compatible subsets
R′ ⊆ R and B′ ⊆ B having the smallest possible number of points. Just give the algorithm.
Correctness and running time will be covered below. (Hint: Voronoi diagrams and/or Delaunay
triangulations may be helpful.)

(c) (5 points) Prove that your algorithm produces a compatible subset by showing that for every
query point q ∈ R2, the color of its nearest neighbor in R′ ∪B′ is the same as its nearest neighbor
in R ∪B.

(d) (5 points) Assuming that the points of R ∪ B are in general position, prove that your algorithm
produces a minimum-sized subset by showing that for any smaller subset, there exists a point
q ∈ R2 that will be incorrectly colored based on its nearest neighbor. (The general-position
assumption is critical!)

(e) (5 points) Derive the running time of your algorithm. (Hint: O(n log n) time is possible. Partial
credit will be given for a slower algorithm.)

Problem 4. (20 points) Consider an n-element point set P = {p1, . . . , pn} in R2, and an arbitrary point
q ∈ R2 (which is not in P ). We say that q is k-deep within P if any line ` passing through q has at
least k points of P on or above the line and at least k points of P on or below it.

q

`

Figure 4: Point q is 4-deep within P .

For example, the point q in Fig. 4 is 4-deep, because any line passing through q has at least four points
of P on either side of it (including lying on the line itself).

(a) (5 points) Assuming we use the usual dual transformation, which maps point p = (a, b) to line
p∗ : y = ax− b, explain what it means for a point q to be k-deep within P (in terms of the dual
line q∗ and the dual arrangement A(P ∗)).

(b) (5 points) Present an efficient algorithm which, given P and q, determines the maximum value k
such that q is k-deep within P . (Hint: O(n log n) time is possible. I will accept a slower algorithm
for partial credit.)

(c) (10 points) Present an efficient algorithm which, given P and an integer k, determines whether
there exists a point q that is k-deep within P . (Hint: First consider what this means in the dual
setting. O(n2 log n) time is possible. I will accept a slower algorithm for partial credit.)

3



For parts (b) and (c) briefly justify your algorithm’s correctness and derive its running time.

Problem 5. (15 points) A set P of n points in Rd determines a set of
(
n
2

)
different distances. Define ∆(P )

to be this set of distances {‖pi − pj‖ : 1 ≤ i < j ≤ n}. Given an integer k, where 1 ≤ k ≤
(
n
2

)
, we

are interested in computing the kth smallest distance from this set. Normally, this would take O(n2)
time, so let’s consider a fast approximation algorithm.

Let δ(P, k) denote the exact kth smallest distance in ∆(P ). Given ε > 0, a distance value x is an
ε-approximation to δ(P, k) if

δ(P, k)

1 + ε
≤ x ≤ (1 + ε)δ(P, k).

Present an efficient algorithm to compute such a value x. Justify your algorithm’s correctness and
derive its running time. (Hint: Use well-separated pair decompositions. You may assume that, when
the quadtree is computed, each node u of the quadtree is associated with an integer wt(u), which
indicates the number of points of P lying within u’s subtree.)

You may assume that d and ε are constants (independent of n). I know of an algorithm that runs in time
O(n log n+n/εd) time, but I will accept for full credit an algorithm that runs in time O((n log n)/εd).)

4


