
CMSC 754:Spring 2020 Dave Mount

Homework 2: Plane Sweep and Linear Programming

Handed out Thursday, Feb 27. Due at the start of class on Tuesday, Mar 10. Late homeworks are not
accepted (unless an extension has been prearranged) so please turn in whatever you have completed by the
due date. Unless otherwise specified, you may assume that all inputs are given in general position. Also,
when asked to give an algorithm with running time O(f(n)), it is allowed to give a randomized algorithm
with expected running time O(f(n)).

Problem 1. You are given an axis-parallel rectangle R and a collection of closed circular disks D =
{d1, . . . , dn}. Assume that each disk di is represented by its center point pi, which lies within R,
and its (positive real) radius ri. Note that the disks may extend outside of R, and one disk may be
contained within another.

(a) The elements of D are said to form a packing of R if every point of R lies within at most one disk
of D (see Fig. 1(a)). Present a plane-sweep algorithm that determines whether D is a packing of
R. Hint: O(n log n) time is possible.

Not covered

(a) (b)

Figure 1: Problem 1: Packing and covering a rectangle

(b) The elements of D are said to form a cover of R if every point of R lies within at least one disk
of D. (The disks of Fig. 1(b) fail to be a cover because of the small gap shown in the figure.)
Present a plane-sweep algorithm that determines whether D is a cover of R.

Hint: O((n + m) log n) time is possible, where m is the number of intersection points lying
within R between the boundaries of disks. The running time should not depend on the number
of intersection points that lie outside of R.

In both cases, you may assume access to primitive operations on circles and disks (e.g., computing the
intersection points of two circles or the containment of one disk within another). As always, briefly
justify your algorithms’ correctness and derive their running times.

Note on terminology: By the term circle, we mean the set of points of R2 that are equidistant from
a center point. The associated closed disk is the set of points that lie at or within this distance, and
the associated open disk is the set of points that lie strictly closer to the center. Given a center point
p ∈ R2 and radius r ≥ 0, we can define the circle, closed disk, and open disk as the set of points q ∈ R2

such that ‖q − p‖ = r, ‖q − p‖ ≤ r and ‖q − p‖ < r, respectively, where ‖q − p‖ denotes the Euclidean
distance between q and p.

Problem 2. Explain how to solve each of the following problems in linear (expected) time. Each can
be modeled as a linear programming (LP) problem, perhaps with some additional pre- and/or post-
processing. In each case, explain how the problem is converted into an LP instance and how the answer
to the LP instance is used/interpreted to solve the stated problem.

1



(a) You are given two point sets P = {p1, . . . , pn} and Q = {q1, . . . , qm} in the plane. Let pi =
(pi,x, pi,y) and qi = (qi,x, qi,y). You are told that these two sets are separated by a vertical line
x = x0, with P to the left and Q to the right (see Fig. 2(a)). Show how to efficiently compute the
line equations (in the form y = ax + b) for each of the following “tangent lines” (that is, support
lines) of both conv(P ) and conv(Q).

(i) `1: Lies above both P and Q

(ii) `2: Lies below both P and Q

(iii) `3: Lies above P and below Q

(iv) `4: Lies below P and above Q

x = x0

P Q

(a) (b) (c)

`1

`2
`3

`4

R

Q

P

h−

h+

x0

Figure 2: Problem 2: LP applications

Note that the convex hull is not given, just the points. In each case, your algorithm should run
in time O(n + m). (Briefly justify correctness and explain the running time in each case.)

(b) The following problem is related to the convex of support vector machines from machine learning.
We are working in Rd (where d is a constant), where each point x is represented by a coordinate
vector (x0, . . . , xd−1). For the sake of illustration, let’s think of the x0 axis as pointing “upwards”.
Any nonvertical hyperplane can be expressed as d-vector of real coefficient a = (a0, . . . , ad−1), by
the equation x0 = a0 +

∑
i=1 d− 1aixi.

You are given two sets of points P = {p1, . . . , pn} and Q = {q1, . . . , qm} in Rd. Explain how to
compute the equations of two parallel hyperplanes:

h+ : x0 = a+0 +

d−1∑
i=1

aixi and h− : x0 = a−0 +

d−1∑
i=1

aixi,

such that every point of P lies on or above h− and every point of Q lies on or below h+ (see
Fig. 2(b)).

The signed vertical distance between h+ and h− is the vertical distance between these hyperplanes
if h+ lies above h− and the negation of this distance otherwise. Your hyperplanes should be chosen
to minimize the signed vertical distance between them. (Thus, if h+ lies below h−, you want to
maximize the distance between them.)

Your algorithm should run in time O(n + m). (Briefly justify your algorithm’s correctness and
explain its running time.)

(c) You are given a set of n halfplanes H = {h1, . . . , hn} in the plane. For concreteness, let us assume
that each halfplane hi is given by the inequality aix + biy ≤ 1, for some real coefficients (ai, bi).
Show how to compute the axis-parallel rectangle R of maximum perimeter that lies within the
intersection of these halfplanes. (You may assume that R is given by the x- and y-coordinates of
its left, right, top, and bottom sides.)

Your algorithm should run in time O(n). (Briefly justify your algorithm’s correctness and explain
its running time.)

2



Problem 3. The purpose of this problem is to get practice with designing and analyzing randomized incre-
mental algorithms. You are to devise a randomized algorithm for computing the upper hull of a set of
points P in the plane. The approach is as follows:

(1) Deterministically, compute the leftmost and rightmost points, denoted v1 and vn, respectively.
The initial upper hull is the segment v1, vn.

(2) Randomly permute the remaining points, which we denote as 〈p2, p3, . . . , pn−1〉.
(3) For i running from 2 to n− 1, add point pi to the hull as follows (see Fig. 3(a)):

(a) Determine the edge vjvj+1 of the hull lying above or below pi (see Fig. 3(b)).

(b) If pi lies below this edge, then ignore it.

(c) Otherwise, walk outwards to the left and right of vjvj+1 to compute points of tangency with
respect to pi, and delete any vertices that lie beneath these tangent lines. Add pi to the hull.

insert

rebucket

vn

v1

pi

vj

vj+1

(a) (b) (c)

Figure 3: Incremental construction of the upper hull.

How do we determine the edge lying immediately above or below pi? We maintain a collection of
buckets, one per edge of the hull, where each contains all the points that lie vertically above or below
this edge. Whenever a new point is added to the hull, the points lying within the bucket of a deleted
edge need to be “rebucketed”. We assume that the points within each bucket are sorted by their
x-coordinates. We merge the points from the deleted buckets (in time proportional to the number of
points) and then walk through this sorted list and assign these points to their new buckets.

(a) Show that (ignoring the time for rebucketing) the above algorithm runs in O(n) time.

(b) Show that, assuming that points are inserted in random order, the expected number of times any
point is rebucketed is O(log n). In particular, show that for any point p, the probability that p is
rebucketed during the ith insertion is at most c/i, where c is a constant. What is the value of c?

It is interesting to note that, unlike the other convex hull algorithms we have seen so far, this one
generalizes to arbitrary dimensions.

Problem 4. In this question, we will explore an alternate way in which to define point-line duality in the
plane. (This generalizes to any dimension, but the plane is the simplest case to work with.) Any line `
in the x, y-plane that does not pass through the origin can be expressed by the equation ` : ax+by = 1.
Let us define the polar dual of `, denoted `∗ to be the point (a, b). Similarly, given a point p = (a, b),
define its dual to be the line p∗ : ax + by = 1. Clearly, this mapping is self-inverse, since p∗∗ = p and
`∗∗ = `.

3



(a) Given a line ` : ax+ by = 1, define its (open) inner halfplane, denoted `<, to be set of points that
lie on the same side of ` as the origin, that is (x, y) ∈ `< if ax + by < 1 (see Fig. 4(a)). Define `>
analogously for points on the opposite side of `, and define `≤ and `≥ analogously for the closed
halfplanes. We say that point p is inside (resp., outside) ` if p ∈ `< (resp. `>).

Prove that polar duality is “order reversing” by showing that point p lies inside/on/outside of `
if and only if `∗ lies inside/on/outside of p∗, respectively (see Fig. 4(b)).

` : ax + by = 1

`< `>

`∗
p

p∗ p∗>
p∗<

(a) (b) (c)

K

`i

Figure 4: Polar dual.

(b) Prove that polar duality is “incidence preserving” by showing that `1 and `2 intersect at point p
if and only if the dual line p∗ passes through dual points `∗1 and `∗2.

(c) Let L = {`1, . . . , `n} be a set of lines in R2 and let K be the intersection of the associated (closed)
inner halfplanes, that is, K =

⋂n
i=1 `≤ (see Fig. 4(c). Let’s assume that K is not empty (which

implies that it contains the origin).

Describe the relationship between K and the convex hull of the polar dual set of points L∗ =
{`∗1, . . . , `∗n}? In particular, explain how the CCW order of edges around the boundary of K
relates to the order of points around conv(L∗). Justify your answer.

Challenge Problem. (Challenge problems count for extra credit points. These additional points are fac-
tored in only after the final cutoffs have been set, and can only increase your final grade.)

Let P be a simple polygon with n sides. We say that two vertices vi and vj of P are monotonically
reachable if there is an x-monotone path from vi to vj . (Fig. 5 shows a number of vertices of P that
have x-monotone paths between them.) Present an O(n log n) time algorithm that computes a count
of the total number of monotonically reachable pairs.

x

v7v6

v5v2

v4

v3

v1

Figure 5: Some of the monotonically reachable pairs for the vertices shown: {v1, v3}, {v1, v4}, {v1, v7},
{v2, v4}, {v2, v7}, {v3, v4}, {v3, v7}, {v5, v7}, {v6, v7}.)

Hint: Note that the number of pairs can be quadratic in n. To achieve a running time of O(n log n)
you cannot count pairs one by one, you need to count them in groups.

4


