
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Object-Oriented Programming Intro

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Object-Oriented Programming (OOP)
• Approach to improving software

• View software as a collection of objects (entities)

• OOP takes advantage of two techniques

• Abstraction

• Encapsulation

© Department of Computer Science UMD

Techniques – Abstraction
• Abstraction

• Provide high-level model of activity or data

• Don’t worry about the details. What does it do, not how

• Example from outside of CS: Microwave Oven

• Procedural abstraction

• Specify what actions should be performed

• Hide algorithms

• Example: Sort numbers in an array (is it Bubble sort? Quicksort? etc.)

• Data abstraction

• Specify data objects for problem

• Hide representation

• Example: List of names

• Abstract Data Type (ADT)

• Implementation independent of interfaces

• Example: The ADT is a map (also called a dictionary). We know it should associate
a key with a value. Can be implemented in different ways: binary search tree, hash
table, or a list.

© Department of Computer Science UMD

Techniques – Encapsulation
• Encapsulation

• Definition: A design technique that calls for hiding implementation details

while providing an interface (methods) for data access

• Example: use the keyword private when designing Java classes

• Allow us to use code without having to know its implementation (supports

the concept of abstraction)

• Simplifies the process of code modification and debugging

• You can make changes to your code without breaking code of others

that are using your class. Change the internals all you want, but just

keep the interface constant

© Department of Computer Science UMD

Abstraction & Encapsulation Example
• Abstraction of a Roster

• Data

• List of student names

• Actions

• Create roster

• Add student

• Remove student

• Print roster

• Encapsulation

• Only these actions can access

names in roster

ROSTER

List of names

create()

addStudent()

removeStudent()

print()

© Department of Computer Science UMD

Java Programming Language
• Language constructs designed to support OOP

• Interfaces

• Specifies a contract. Allows us to express an ADT. What should it do,

not how

• Provides abstract methods (usually no implementation)

• Defines an IS-A relationship

• Class

• Blue print for an object

• Object – instance of a class

• Can be used to implement an interface (How will it do what the

interface promised)

• Classes can extend other classes

• Allows new class to inherit from original class

• Defines an IS-A relationship

© Department of Computer Science UMD

Review on Interfaces
• Defines a new reference type

• Represents an API (Application Programming Interface)

• Can not be instantiated (you can only create an instance of a class that

implements the interface)

• An Interface can contain the following public members:

• static final constants

• abstract methods (no body)

• default methods (with code in the body) – added in Java 8 to support

backward compatibility

• static methods

• static nested types

• Example: animalExample package

© Department of Computer Science UMD

Java Collections Framework
• Collection

• Object that groups multiple elements into one unit

• Also called container

• An example of a collection you used in CMSC 131 is an ArrayList

(nice array ☺)

• Java Collections Framework (JCF) consists of

• Interfaces

• Implementations

© Department of Computer Science UMD

Java Collections Framework
• Collection → Java Interface

• See Java API entry for Collection

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html

• Example: CollectionExample.java

• Collections → Class

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collections.html

Interface (red)

Class (black)

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collections.html

Generics (Motivating Example)
• Problems before Generics (Introduced in Java 5)

• Handle arguments as Objects

• Objects must be cast back to actual class

• Casting can only be checked at runtime

• Example

class A { … }

class B { … }

List myL = new ArrayList(); //raw type

myL.add(new A()); // Add an object of type A

…

B b = (B) myL.get(0); // throws runtime exception

// java.lang.ClassCastException

© Department of Computer Science UMD

Solution (Generic Types)
• Generic types

• Provides abstraction over types

• Can parameterize classes, interfaces, methods

• Parameters defined using <X> notation

• Examples

• public class foo<X, Y, Z> { … }

• List<String> myNames = ...

• Improves

• Readability & robustness

• Used in Java Collections Framework

© Department of Computer Science UMD

Generics (Usage)
• Using generic types

• Specify <type parameter> when creating an instance

• Automatically performs casts

• Can check class at compile time

• Example

class A { … }

class B { … }

List<A> myL = new ArrayList<A>();

myL.add(new A()); // Add an object of type A

A a = myL.get(0); // myL element  class A

…

B b = (B) myL.get(0); // causes compile time error

Example: ArrayListExample.java

© Department of Computer Science UMD

Autoboxing & Unboxing
• Automatically convert primitive data types

• Data value  Object (of matching class)

• Wrapper Classes:

• Character, Boolean, Byte, Double, Short, Integer, Long, Float

• Example

ArrayList<Integer> myL = new ArrayList<Integer>();

myL.add(1); // instead of myL.add(new Integer(1));

int y = mL.getFirst();

//instead of int y = mL.getFirst().intValue();

Example: SortValues.java

© Department of Computer Science UMD

Iterable and Iterator Interfaces
• See:

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html

• Allows you to use enhanced for loop (see next slide)

• Note that it only has one mandatory method that needs an implementation:

• Iterator<T> iterator()

• So what is an Iterator? Another interface

• See:
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html

• Note that it only has two mandatory methods that need an implementation:

• boolean hasNext(); // true if there is another element

• E next(); // returns the next element of type E

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html

Iterable and Iterator Interfaces
• All Java Collection classes are iterables (note a Map is not a collection).

Therefore, you can call the iterator method to get an Iterator and use an

enhanced for loop to visit elements in the collection

• Example:

ArrayList<String> L = new ArrayList<String>();

L.add("Mary");

L.add("Pete");

Iterator<String> i = L.iterator();

while (i.hasNext())

System.out.println(i.next());

• We will make classes that implement Iterator later in the course. For now,

we just use the ones in the JCF

© Department of Computer Science UMD

Enhanced For Loop
• Works for arrays and any class that implements the Iterable interface,

including all collections

• Recall that iterables have an iterator()method that returns an

Iterator<T> object

• Enhanced for loop handles Iterator automatically

• Test hasNext(), then invoke next()

• /* Iterating over a String array */

String[] roster = {"John", "Mary", "Alice", "Mark"};

for (String student : roster) {

System.out.println(student);

}

© Department of Computer Science UMD

Enhanced For Loop
ArrayList<String> roster = new ArrayList<String>();

roster.add("John");

roster.add("Mary");

/* Using an iterator */

for (Iterator<String> it = roster.iterator(); it.hasNext();)

System.out.println(it.next());

/* Using for loop */

for (String student : roster)

System.out.println(student);

© Department of Computer Science UMD

