
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Inheritance

Department of Computer Science

University of Maryland, College Park

• Inheritance and private members:

• Student objects inherit all the private data (name and id)

• However, private members of the base class cannot be accessed directly

Example: (Recall that name is a private member of Person)

public class Student extends Person {

…

public void someMethod() { name = “Mr. Foobar”; } // Illegal!

public void someMethod2() { setName(“Mr. Foobar”); } // Okay

}

• Why is this? After you have gone to all the work of setting up privacy, it

wouldn’t be fair to allow someone to simply extend your class and now have

access to all the private information

Inheritance and Private

© Department of Computer Science UMD

• The derived class cannot access private base elements. So can a base class

grant any special access to its derived classes?

• Special Access for Derived Classes:

Protected: When a class element (instance variable or method) is declared

to be protected (rather than public or private) it is accessible:

• To any derived class (and hence to all descendents), and

• To any class in the same package

Example:

protected void someMethod() { … } // has protected access

Package: When a class element is not given any access modifier (private,

public, protected) it is said to have package access. It is accessible:

• To any class in the same package

Example:

void someOtherMethod() { … } // has package access

Protected and Package Access

© Department of Computer Science UMD

• Which should I use? : private, protected, package, or public?

• Public:

• Methods of the object’s public interface

• Constant instance variables (static final)

• Private:

• Instance variables (other than constants)

• Internal helper/utility methods (not intended for use except in this class)

• Protected/Package:

• Internal helper/utility methods (for use in this class and related classes)

• Note: Some style gurus discourage the use of protected. Package is safer,

since any resulting trouble can be localized to the current package

Access to Base Class Elements

© Department of Computer Science UMD

package fooBar;

public class A {

public int vPub;

protected int vProt;

int vPack;

private int vPriv;

}

package fooBar;

public class B {

can access vPub;

can access vProt;

can access vPack;

cannot access vPriv;

}

package fooBar;

public class C extends A {

can access vPub;

can access vProt;

can access vPack;

cannot access vPriv;

}

public class D extends A {

can access vPub;

can access vProt;

cannot access vPack;

cannot access vPriv;

}

public class E {

can access vPub;

cannot access vProt;

cannot access vPack;

cannot access vPriv;

}

Package: fooBar

When looking at access specifiers assume two point

of views: implementor (defining a class that might

extend another or use classes in a package) and user

(e.g., some creating instances of a class from a driver

class)

Access Modifiers

© Department of Computer Science UMD

• Class inheritance tree defines a hierarchy:

• GradStudent is a Student

• Student is a Person

• Person is a ???

• There is a class at the top of the hierarchy, called Object. Every class is

derived (either directly or indirectly) from Object

• If a class is not explicitly derived from some class, it is automatically

derived from Object. The following are equivalent:

public class FooBar { … }  public class FooBar extends Object { … }

• This means that if you write a method with a parameter of type Object, you

can call this method with an object reference of any class

• Object is defined in java.lang and therefore it is available to all programs

The Class Hierarchy and Object

© Department of Computer Science UMD

Object
• The class Object has no instance variables, but defines a number of methods. These

include:

toString(): returns a String representation of this object

equals(Object o): test for equality with another object o

• Every class you define can override these two methods with something that makes

sense for your class (hashCode method is also included in the group)

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html

Person

Student Faculty

Undergrad GradStudent Instructor Professor

Object

String Number

Integer Float

Boolean

Double

Your classes

are here

Classes from the Java

class library

Defined in java.lang

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html

Early and Late Binding
• Motivation: Consider the following example:

Faculty carol = new Faculty("Carol Tuffteacher", 458, 1995);

Person p = carol;

System.out.println(p.toString());

• Q: Should this call Person’s toString or Faculty’s toString?

• A: There are good arguments for either choice:

Early (static) binding: The variable p is declared to be of type Person. Therefore, we

should call the Person’s toString

Late (dynamic) binding: The object to which p refers was created as a “new

Faculty”. Therefore, we should call the Faculty’s toString

Pros and cons: Early binding is more efficient, since the decision can be made at

compile time. Late binding provides more flexibility

• Java uses late binding (by default): so Faculty toString is called

(Note: C++ uses early binding by default)

• Late (or dynamic) binding: method that is called depends on an object’s

actual type, and not the declared type of the referring variable

© Department of Computer Science UMD

Polymorphism
• Java’s late binding makes it possible for a single reference variable to refer

to objects of many different types. Such a variable is said to be polymorphic

(meaning having many forms)

• Example: Create an array of various university people and print

Person[] list = new Person[3];

list[0] = new Person("Col. Mustard", 10);

list[1] = new Student ("Ms. Scarlet", 20, 1998, 3.2);

list[2] = new Faculty ("Prof. Plum", 30, 1981);

for (int i = 0; i < list.length; i++) {

System.out.println(list[i].toString());

}

• What type is list[i]? It can be a reference to any object that is derived from

Person. The appropriate toString will be called

• Example: Polymorphism.java

[Col. Mustard] 10

[Ms. Scarlet] 20 1998 3.2

[Prof. Plum] 30 1981

Output:

© Department of Computer Science UMD

getClass() and instanceof Operator
• Objects in Java can access their type information dynamically

• getClass(): Returns a reference to an object of a class named Class. Instances of

the class Class represent classes and interfaces in a running Java application. You

can determine whether two objects belong to the same class by comparing the value

returned by getClass()

Person bob = new Person(…);

Person ted = new Student(…);

if (bob.getClass() == ted.getClass()) // false (ted is really a Student)

• instanceof: You can determine whether one object is an instance of a class or

derived from a class using instanceof. Note that it is an operator (!) in Java, not a

method call

• Are instanceof and getClass() equivalent? No.

• A student object is an instance of a Person, but getClass() calls will return different

values for a reference to Student and a reference to a Person

• Example: InstanceGetClass.java

© Department of Computer Science UMD

Up-casting and Down-casting
• We have already seen that we can assign a derived class reference anywhere

that a base class is expected (e.g., person1 = student1)

Upcasting: Casting a reference to a base class (casting up the inheritance

tree). This is done automatically and is always safe

Downcasting: Casting a reference to a derived class. The casting will only

work if the type of actual object associated with the variable is lower in the

inheritance tree (e.g., you are casting a Student to a Person and not the

other way around). Before you cast, you must verify (using instanceof) that

the actual type of the object allows for the downcasting. If you don’t check

you risk generating a ClassCastException at run-time

• Example: UpCastingDownCasting.java

• Example: SafeDownCasting.java

• As elements are removed from the list, they must be downcast from

Person to Student, but this can only be done if the object really is a Student

© Department of Computer Science UMD

