
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Inheritance Introduction

Department of Computer Science

University of Maryland, College Park

Announcements
• Make sure you check your projects results in the submit server

• Do not wait until the day of the project to try submitting your project

• Submission problems are not a valid excuse for a project extension

• Remember we take academic integrity matters seriously

• Inheritance: is the process by which one new class, called the derived

class, is created from another class, called the base class

• The derived class is also called: subclass or child class

• The base class is also called: superclass or parent class

• Motivation: In real life objects have a hierarchical structure:

• We want to do the same with our program objects

Shape

Circle RectangleTriangle

Right-Triangle Equilateral-Triangle

Animal

Insect ReptileMammal

Cat DogPrimate

Human Ape

Inheritance

• Object Inheritance: What does inheritance mean within the context of object-

oriented programming?

• Suppose a derived class, Circle, comes from a base class, Shape:

• Circle should have all the instance variables that Shape has.

(E.g., Shape stores a color, and thus, Circle stores a color.)

• Circle should have all the methods that Shape has (E.g.,

Shape has an accessor, getColor(), and thus, Circle has getColor().)

• Circle is allowed to define new instance variables and new methods that

are particular to it:

• (New) Circle Instance variables: Center, radius.

• (New) Methods: draw(), getArea(), getPerimeter()

• Code reuse: Code/Data that is common to all the derived classes can be

stored in the base class. This allows us to avoid code duplication, and so

makes development and maintenance easier

Inheritance

• We derive two classes, Student and Faculty from Person. Each class inherits all

the data and methods from Person, and adds data and methods that are

particular to its particular function

• Student: In addition to name and ID, has admission year and GPA

• Faculty: In addition to name and ID, has the year they were hired

• The above diagram is referred to as an inheritance tree/hierarchy

Person:

name

ID-Number

Student:

admission year

GPA

Faculty:

year hired

Person is the

base class

(super class)

Student and Faculty

are the derived

classes (subclasses)

University Database

• extends: To specify that Student is a derived class (subclass) of Person we
add the descriptor “extends” to the class definition:

• public class Student extends Person { … }

• Notice that a Student class

• Inherits everything from the Person class

• A Student IS-A Person (wherever a Person is needed, we can use a Student)

• super(): When initializing a new Student object, we need to initialize its base
class (or super class). This is done by calling super(…). For example,
super(name, id) invokes the constructor Person(name, id)

• super(…) must be the first statement of your constructor

• If you do not call super(), Java will automatically invoke the base class’s
default constructor

• What if the base class’s default constructor is undefined? Error

• You must use “super(…)”, not “Person(…)”.

• Example: university package

extends and super

Heap

• When you create a new derived class object:

• Java allocates space for both the base class instance variables and the

derived class variables

• Java initializes the base class variables first, and then initializes the

derived class variables (what explains why super() should appear first)

• Example:

Student bob = new Student("Bob", 457, 2004, 4.0);

Person ted = new Person("Ted", 331);

Ted

331

Bob
super(n, id)

builds the

Person part
2004

4.0
Student constructor finishes it off

Memory Layout and Initialization Order

457

ted

bob

• Inheritance: Since Student is derived from Person, a Student object can invoke
any of the Person methods, it inherits them

Student bob = new Student("Bob", 457, 2004, 4.0);

String bobsName = bob.getName());

bob.setName("Robert");

System.out.println("Bob's new info: " + bob.toString());

• A Student “is a” Person:

• By inheritance a Student object is also a Person object. We can use a
Student reference anywhere that a Person reference is needed

Person robert = bob; // Okay: A Student is a Person

• We cannot reverse this. (A Person need not be a Student.)

Student bob2 = robert; // Error! Cannot convert Person to Student

Inheritance

bob is a Student, but

by inheritance we can

invoke Person methods

• New Methods: A derived class can define entirely new instance variables

and new methods (e.g. hireYear and getHireYear())

• Overriding (“redefining”, changing what is does): A derived class can also

redefine existing methods

public class Person {

…

public String toString() { … }

}

public class Student extends Person {

…

public String toString() { … }

}

Student bob = new Student("Bob", 457, 2004, 4.0);

System.out.println("Bob's info: " + bob.toString());

The base class defines

the method toString()

The derived class can

redefine this method.

Since bob (below) is of type Student,

this invokes the Student toString()

Overriding Methods

• Don’t confuse method overriding with method overloading

Overriding (“redefining”): occurs when a derived class defines a method

with the same name and parameters as the base class

Overloading: occurs when two or more methods have the same name, but

have different parameters (different signature)

Example:
public class Person {

public void setName(String n) { name = n; }

…

}

public class Faculty extends Person {

public void setName(String n) {

super.setName(“The Evil Professor ” + n);

}

public void setName(String first, String last) {

super.setName(first + “ ” + last);

}

}

The base class defines

a method setName()

Overriding: Same name and

parameters; different definition.

Overloading: Same name, but

different parameters.

Overriding and Overloading

• We can override methods, can we override instance variables too?

• Answer: Yes, it is possible, but not recommended

• Overriding an instance variable is called shadowing, because it makes the

base instance variables of the base class inaccessible (we can still access

it explicitly using super.varName). You are creating a new variable with

the same name

public class Person { public class Staff extends Person {

String name; String name;

// … // … name refers to Staff’s name

} }

• This can be confusing to readers, since they may not have noticed that

you redefined name. Better to just pick a new variable name

Overriding Variables: Shadowing

• super: refers to the base/super class object

• We can invoke any base class constructor using super(…)

• We can access data and methods in the base class (Person) through super.

E.g., toString() and equals() invoke the corresponding methods from the

Person base class, using super.toString() and super.equals()

• this: refers to the current object

• We can refer to our own data and methods using “this.”

• In a class, we can invoke one constructor from another constructor using this(

…). As with the super constructor, this can only be done within a

constructor, and must be the first statement of the constructor. Example:

public Toy(Toy toy) {

this(toy.name, toy.releasedYear);

}

• Can super() and this() calls appear simultaneously in a constructor?

super and this

