
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Abstract Classes and Inheritance

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Motivating Example - Shapes
• Graphics drawing program to create circles, rectangles, etc

• Define a base class Shape

• Derive various subclasses for specific shapes

• Each subclass defines its own method drawMe()

public class Shape {

public void drawMe() { … } // generic drawing method

}

public class Circle extends Shape {

public void drawMe() { … } // draws a Circle

}

public class Rectangle extends Shape {

public void drawMe() { … } // draws a Rectangle

}

• If we only need the drawMe() method, could we have used an interface?

• We want to place common methods in base class (in addition to have drawMe())

© Department of Computer Science UMD

Motivating Example – Shapes
• Implementation

• Picture consists of array shapes of type Shape[]

• To draw the picture, invoke drawMe() for all shapes

Shape[] shapes = new Shape[…];

shapes[0] = new Circle(…);

shapes[1] = new Rectangle(…);
…

for (int i = 0; i < shapes.length; i++)

shapes[i].drawMe();

• Example: withoutAbstractClass

Store the shapes to
be drawn in an array.

Draws all the shapes. Each
call invokes drawMe for the
specific shape.

Heap:

shapes
[0]

[1]

[2]

…

(a Circle object)

(a Rectangle object)

…

© Department of Computer Science UMD

Motivating Example - Shapes
• Problem

• Shape object does not represent a specific shape, still users can create
instances of it (Shape s = new Shape())

• How to implement Shape’s drawMe() method?

public class Shape {
void drawMe() { … } // generic drawing method

}

• Possible solutions

• Draw some special “undefined shape”

• Ignore the operation

• Issue an error message

• Throw an exception

• Better solution

• Abstract drawMe() method, abstract Shape class

• Tells compiler Shape is an incomplete class

© Department of Computer Science UMD

Modifier - Abstract
• Description

• Represents generic concept

• Just a placeholder

• Leave lower-level details to subclass

• Applied to

• Methods

• Classes

• Example

abstract class Foo { // abstract class

abstract void bar(); // abstract method

}

• Example: withAbstractClass

© Department of Computer Science UMD

Abstract Class Summary
• Abstract Methods

• Behaves much like method in interface

• Give a signature, but no body

• Includes modifier abstract in method signature

• Class descendants provide the implementation

• Abstract methods cannot be final

• Since must be overridden by descendent class (final would prevent this)

• A non-abstract method of an abstract class can call abstract methods of the class

• Abstract Class

• Required if class contains any abstract method

• Includes modifier abstract in the class heading

public abstract class Shape { … }

• An abstract class is incomplete

• Cannot be created using “new” → Shape s = new Shape(…); // Illegal!

• But you can create concrete shapes (Circle, Rectangle) and assign them to

variables of type Shape → Shape s = new Circle(…);

© Department of Computer Science UMD

Inheritance versus Composition
• Inheritance is but one way to create a complex class from another. The other way is

to explicitly have an instance variable of the given object type. This is called
composition

Common Object:

public class ObjA {

public methodA() { … }

}

Inheritance: Composition:

public class ObjB extends ObjA { public class ObjB {

… ObjA a;

// call methodA(); // call a.methodA()

} }

• When should I use inheritance vs. Composition?

• ObjB “is a” ObjA: in this case use inheritance

• ObjB “has a” ObjA: in this case use composition

Add ObjA as an

instance variable
Derive a new

class from ObjA

© Department of Computer Science UMD

Inheritance versus Composition
• University parking lot permits: A parking permit object involves a university Person

and a lot name (“4”, “11”, “XX”, “Home Depot”)

Inheritance: Composition:

public class Permit extends Person { public class Permit {

String lotName; Person p;

String lotName;

// … // …

} }

• Which to use?

A parking permit “is a” person? Clearly no

A parking permit “has a” person? Yes, because a Person is one of the two
entities in a permit object

So composition is the better design choice here

• Prefer Composition over inheritance

When in doubt or when multiple choices available, prefer composition over

Inheritance

© Department of Computer Science UMD

Multiple Inheritance
• Motivation: There are many situations where a simple class hierarchy is not

adequate to describe a class’ structure

• Example: Suppose that we have our class hierarchy of university people and

we also develop a class hierarchy of athletic people:

• StudentAthlete: Suppose we want to create an object that inherits all the

elements of a Student (admission year, GPA) as well as all the elements of

an Athlete (sport, amateur-status)

AthleticPerson

AthleticDirectorCoachAthlete

HeadCoach AssistantCoach

Person

Student Faculty

StudentAthlete

© Department of Computer Science UMD

Multiple Inheritance
• Can we define a StudentAthlete by inheriting all the elements from both Student

and Athlete?

public class StudentAthlete extends Student extends Athlete { … }

• Alas, no. At least not in Java

• Multiple Inheritance:

• Building a class by extending multiple base classes is called multiple

inheritance

• It is a very powerful programming construct, but it has many subtleties and

pitfalls. (E.g., If Athlete and Student both have a name instance variable and

a toString() method, which one do we inherit?)

• Java does not support multiple inheritance. (Although C++ does)

• In Java a class can extend only one class

• However, a class can implement any number of interfaces

Nice try! But not allowed in Java

© Department of Computer Science UMD

“Faking” Multiple Inheritance with Interfaces
• Java lacks multiple inheritance, but there is an alternative

What public methods do we require of an Athlete object?

• String getSport(): Return the athlete’s sport

• boolean isAmateur(): Does this athlete have amateur status?

• We can define an interface Athlete that contains these methods:

public interface Athlete {

public String getSport();

public boolean isAmateur();

}

• Now, we can define a StudentAthlete that extends Student and implements

Athlete

© Department of Computer Science UMD

“Faking” Multiple Inheritance with Interfaces
• StudentAthlete extends Student and implements Athlete:

public class StudentAthlete extends Student implements Athlete {

private String mySport;

private boolean amateur;

// … other things omitted

public String getSport() { return mySport; }

public boolean isAmateur() { return amateur; }

}

• StudentAthlete can be used:

• Anywhere that a Student object is expected (because it is derived from
Student)

• Anywhere that an Athlete object is expected (because it implements the
public interface of Athlete)

• So, we have effectively achieved some of the goals of multiple inheritance,
by using Java’ single inheritance mechanism

© Department of Computer Science UMD

Common Uses of Interfaces
• Interfaces are flexible things and can be used for many purposes in Java:

• A work-around for Java’s lack of multiple inheritance

(We have just seen this)

• Specifying minimal functional requirements for classes (This is its

principal purpose)

• For defining groups of related symbolic constants

(This is a somewhat unexpected use, but is not uncommon)

© Department of Computer Science UMD

Interface Hierarchies
• Inheritance applies to interfaces, just as it does to classes. When an

interface is extended, it inherits all the previous methods

• Example: IceCreamStore.java, TerpStore.java,

InternationalIceCreamStore.java (inherits from IceCreamStore.java),

IceCreamChamp.java (implements InternationalIceCreamStore),

Driver.java

© Department of Computer Science UMD

Review of Overloading and Overriding
• Let’s review some elements of method overloading and overriding

• Method’s signature – includes only the name, and parameters

• Method’s prototype – first line of the method definition with a semicolon at

the end

• When overriding a method, the subclass method signature must match

exactly the signature of the superclass (same name, same arguments)

• You may change access specifier (public, private, protected), but derived

classes cannot decrease the visibility

• Example: clone() method in Object class

• By default defined protected, but when we override it we define it as public

• Example of overloading: max/min methods in Math class

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html

Example: You be the Compiler
public class Base {

protected void someMethod(int x) { … }

}

public class Derived extends Base {

public void someMethod(int x) { … }

public int someMethod(int x) { … }

public void someMethod(double d) { … }

}

When analyzing the following, first consider whether a statement compiles. All the

following are in the same package

Base b = new Base();

Base d = new Derived();

Derived e = new Derived();

b.someMethod(5);

d.someMethod(6);

d.someMethod(7.0);

e.someMethod(8.0);

Base class

Derived class

Overriding: with increased visibility

Overloading

calls Base:someMethod(int)

calls Derived:someMethod(int)

Error! Since d is declared Base, this attempts to

call the overridden method someMethod(int). But

the argument is of the wrong type

calls Derived:someMethod(double)

Error! duplicate method declaration

© Department of Computer Science UMD

Disabling Overriding with “final”
• We can disable overriding by declaring a method to be “final”

• Sometimes you do not want to allow method overriding

Correctness: Your method only makes sense when applied to the base class.

Redefining it for a derived class might break things

Efficiency: Late binding is less efficient than early binding. You know that no

subclass will redefine your method. You can force early binding by disabling

overriding

• Example: The class Object defines the following method:

getClass(): returns a description of a class. You can test whether two objects x

and y are of the same class with:

if (x.getClass() == y.getClass()) …

This is a very useful function. But clearly, we do not want arbitrary classes

screwing around with it. The getClass() method is a final

• Example: getArea() final method in withAbstractClass.Circle

© Department of Computer Science UMD

Disabling Overriding with “final”
• final: Has different meanings, depending on context:

• Define symbolic constants:

public static final int MAX_BUFFER_SIZE = 1000;

• Indicate that a method cannot be overridden by derived classes

public class Parent {

public final void someMethod() { … }

}

public class Child extends Parent {

public void someMethod() { … }

}

• A class can be defined as final what will not allow the class to be extended. For

example, public final class Circle extends Shape will not allow us to define a

SuperCircle class that extends Circle

• A final class cannot be extended

• String class is an example of a final class

• Too important for others to change the behavior associated with String methods

Subclasses cannot

override this method

Illegal! someMethod is final

in base class.

© Department of Computer Science UMD

