
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Exceptions

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Exceptions (Rare Events)

© Department of Computer Science UMD

• Rare event outside normal behavior of code

• Usually, a run-time error

• Examples

• Division by zero

• Access past end of array

• Out of memory

• Number input in wrong format (float vs. integer)

• Unable to write output to file

• Missing input file

Dealing with Exceptions (Rare Events)
• What to do when this kind of event occurs?

• Ignore the problem

• Print error message

• Request data

• Exit method returning error code caller must check

• Exit program

• Exiting method returning error code has disadvantages

• Calling method may forget to check code

• Agreement on error codes

• Error handling code mixed with normal code

• Preferred approach: Exception Handling (e.g., Java’s

exception mechanism)

© Department of Computer Science UMD

Exception Handling Advantages
• Compiler ensures exceptions are caught eventually

• No need to explicitly propagate exception to caller

• Backtrack to caller(s) automatically

• Class hierarchy defines meaning of exceptions

• No need for separate definition of error codes

• Exception handling code separate & clearly marked

© Department of Computer Science UMD

Representing Exceptions in Java
• Exceptions represented as

• Objects derived from class Throwable

• Code

public class Throwable {

Throwable() // No error message

Throwable(String mesg) // Error message

String getMessage() // Return error mesg

void printStackTrace() { … } // Record methods

… // called & location

}

© Department of Computer Science UMD

Java Exceptions
• Any code that can potentially throw an exception can been

closed in a

• try { } block

• Exception handlers are specified using catch

• catch(ExceptionType e) { }

• You can have several catch clauses associated with a try block

© Department of Computer Science UMD

Java Exceptions

© Department of Computer Science UMD

• When an exception is thrown

• Control exits the try block

• Control proceeds to closest matching exception handler after the

try block

• Java exceptions backtrack to caller until matching block is

found

• Execute code in exception handler

• Execute code in finally block (if present)

• Example: Fundamentals.java

• Scope of try is dynamic

• Includes code executed by methods invoked in try block (and

their descendants)

Java Exceptions
• Throwing exceptions

• In previous example the exception was thrown for you

• You can throw exceptions too

• throw <Object of class exception>

• Example:
throw new UnsupportedOperationException("You must implement this method.");

© Department of Computer Science UMD

Java Exceptions
• Finally block

• Code that is executed no matter what

• Regardless of which catch block

• Even if no catch block is executed

• Executed before transferring control to caller

• Placed after try and all catch blocks

• Tries to restore program state to be consistent, legal (e.g.,

closing files)

• Example: ReadNegativeValue.java

© Department of Computer Science UMD

Propagation
• Control proceeds to closest matching exception handler after

the try block

• Java exceptions backtrack (propagation) to caller until

matching block is found

• Example: Propagation.java

© Department of Computer Science UMD

Several Catch Clauses
• Example: SeveralCatchClauses.java

© Department of Computer Science UMD

Representing Exceptions
• Java exceptions class hierarchy

• Two types of exceptions - checked & unchecked

• Unchecked - Serious errors not handled by typical program

• Checked - Errors typical program should handle (e.g., file not found)

© Department of Computer Science UMD

Object

Error

Throwable

Exception

LinkageError

VirtualMachoneError

ClassNotFoundException

CloneNotSupportedException

IOException

AWTError

…

AWTException

RuntimeException

…

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Unchecked

Checked

NoSuchElementException

…

Representing Exceptions
• Java Exception class hierarchy

© Department of Computer Science UMD

Checked and Uncheck Exceptions
• Unchecked

• Serious errors not handled by typical program

• They are your fault ☺ (your code is wrong)

• Usually indicate logic errors

• Examples → NullPointerException, IndexOutOfBoundsException

• Catching unchecked exceptions is optional (handled by JVM if

not caught)

© Department of Computer Science UMD

Checked and Uncheck Exceptions
• Checked

• Errors typical program should handle. Describes problem

that may occur at times, regardless how careful you are

• Used for operations prone to error

• Examples → IOException, ClassNotFoundException

• Compiler requires “catch or declare”

• Catch and handle exception in method, OR

• Declare method can throw exception, forcing calling

function to catch or declare exception in turn

• Example: Caught.java, Declared.java

© Department of Computer Science UMD

Miscellaneous
• Use exceptions only for rare events

• Not for common cases (e.g., checking end of loop)

• High overhead to perform catch

• Use existing Java Exceptions if possible

• Avoid simply catching & ignoring exceptions

• catch (Exception e) { } // Nothing in between { }

• Poor software development style

• An exception can be rethrown

catch (ExceptionType e) {

throw e;

}

• Example: ReadNegativeValueRethrow.java

• Example: Additional exceptions examples in otherExamples package

© Department of Computer Science UMD

