
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Testing and Correctness

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Debugging Is Harder Than Coding!

“Debugging is twice as hard as writing the code in the first

place. Therefore, if you write the code as cleverly as

possible, you are, by definition, not smart enough to

debug it”

– Brian W. Kernighan and P. J. Plauger, The Elements of

Programming

© Department of Computer Science UMD

Overview
• Program correctness is determined by the presence / absence

of program defects (errors)

• Issues

• Types of program errors

• Compile-time

• Run-time

• Logic

• Testing

• Debugging

© Department of Computer Science UMD

Program Errors (Compile-Time)

© Department of Computer Science UMD

• Errors in code construction

• Lexical (typographical), grammatical, types

• Detected during compilation

• Usually easy to correct quickly

• Examples

• Misspelled Keyword

• Missing or misplaced symbol

• Incorrect operator for variable type

Program Errors (Run-time)

© Department of Computer Science UMD

• Operations illegal / impossible to execute

• Detected during program execution

• But not detectable at compile time

• Treated as exceptions in Java

• Examples

• Division by zero

• Array index out of bounds

• Using null pointer

• Illegal format conversion

Program Errors (Logical)

© Department of Computer Science UMD

• Logical errors

• Operations leading to incorrect program state

• May (or may not) lead to run-time errors

• Problem in design or implementation of algorithm

• Examples

• Computing incorrect arithmetic value

• Ignoring illegal input

• Hardest error to handle

• Detect by testing

• Fix by debugging

Testing

© Department of Computer Science UMD

• Run program (or part of program) under controlled conditions

to verify behavior

• Detects run-time error if exception thrown

• Detects logical error if behavior is incorrect

• Use of debugger is important

• Issues

• Selecting test cases

• Think of them as you develop code or before

• Test coverage

• Others

Unit Test
• Test individual units extensively

• Classes

• Methods

• Central part of Extreme Programming (XP)

• Extensive unit testing during development

• Pair programming

• Design unit tests along with specification

• Approach

• Test each method of class

• Test every possible flow path through method

© Department of Computer Science UMD

Flow Path
• Unique execution sequence through program

• Example

S1

while (B1) {

if (B2)

S2

else

S3

}

Flows

S1

S1, S2

S1, S3

S1, S2, S2

S1, S2, S3

S1, S3, S2

S1, S3, S3

…

© Department of Computer Science UMD

Test Coverage
• Not possible to test all flow paths

• Many paths by combining conditionals, switches

• Infinite number of paths for loops

• New paths caused by exceptions

• Test coverage

• Whether code is executed by some test case

• Alternative to flow path

• Ensure high % (if not all) of lines of code tested

• What does 100% test coverage mean?

• Does not capture all possible flow paths

• Even if all lines of code tested by some test case

© Department of Computer Science UMD

Test Coverage, Continued
• Branch coverage is stronger than statement coverage

• Generally achievable

• Can be tricky to cover all exceptions and error cases

• Control flow coverage doesn’t tell you about data coverage

• Did you try it with negative integers, or with non-ASCII

characters?

• Coverage won’t tell you about functionality you forgot to

implement or test

• Java Code Coverage for Eclipse

• You can get code coverage information by using the option

Run→Coverage As→Java Application

© Department of Computer Science UMD

Developing Quality Test Cases
• Tips on developing test cases

• Develop test data during analysis & design phases

• Use cases → Test cases

• Pay close attention to problem specification

• Check boundary conditions

• 1st and last iterations of loop

• 1st and last values added to data structure

• Improve code coverage

© Department of Computer Science UMD

About Testing
• JUnit

• Review the information available at

• http://www.cs.umd.edu/eclipse/junit/

• Notice the problem you may experience while using static and

JUnit

• Findbugs (Static analysis to find coding mistakes)

• http://findbugs.sourceforge.net/

© Department of Computer Science UMD

http://www.cs.umd.edu/eclipse/junit/
http://findbugs.sourceforge.net/

Debugger
• Be familiar with a Java Debugger

• Important operations

• Setting breakpoints

• Stepping into functions

• Stepping over

• Looking at variable values

• Additional information at

• http://www.cs.umd.edu/eclipse/debugging/

© Department of Computer Science UMD

http://www.cs.umd.edu/eclipse/debugging/

Rubber Duck Debugging
• https://en.wikipedia.org/wiki/Rubber_duck_debugging

© Department of Computer Science UMD

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Eclipse’s Code Coverage Support
• Java Code Coverage for Eclipse

• You can get code coverage information by using the option

Run→Coverage As→Java Application

© Department of Computer Science UMD

