
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Java Language Constructs II

Department of Computer Science

University of Maryland, College Park

Three Levels of Copying Objects
Assume y refers to object z

y
z …

y

x

z

z'

…

y

x

z

z'

…

…

1. Reference copy

Makes copy of reference

x = y;

2. Shallow copy

Makes copy of object

x = y.clone();

3. Deep copy

Makes copy of object z and

all objects (directly or

indirectly) referred to by z

x

© Department of Computer Science UMD

Cloning
• Cloning

• We can create a copy of an object using the clone() method

• The Object class provides a clone() method that provides shallow

copying

• See prototype at
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html

• To clone objects of a particular class, override the clone() method and

call the Object class clone method. If the fields of the class are

primitives or references to immutable objects, there is nothing else you

need to do; otherwise you may need to duplicate objects referred by

reference instance variables

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html

Cloning
• Regarding overriding clone() method (Object class)

• When overriding a method in Java, you can define the return type to

be a subtype of the return type of the method being overridden. This

is known as a covariant return type.

• The above means that when defining a clone() method for a class

the return type of the overriding clone() method can be changed to

the class type. For example, if you are defining the clone() method

for a Mouse class, the method we are overriding is

protected Object clone() and we will override it with

public Mouse clone()

© Department of Computer Science UMD

Cloning
• A class needs to implement the Cloneable interface if it calls the Object

class clone() method. If a class calls the clone method, but it does not

implement the interface, the exception CloneNotSupportedException

will be generated

• From the Java API

• CloneNotSupportedException - Thrown to indicate that the clone

method in class Object has been called to clone an object, but that

the object's class does not implement the Cloneable interface

• The Object class clone() method is defined as protected

• Example: cloning package

• Mouse.java, Computer.java, SuperComputer.java

© Department of Computer Science UMD

Garbage Collection
• Concepts

• All interactions with objects occur through reference variables

• If no reference to object exists, object becomes garbage (useless, no

longer affects program)

• Garbage collection

• Reclaiming memory used by unreferenced objects

• Periodically performed by Java

• Not guaranteed to occur

• Only needed if running low on memory

• Suggesting JVM to do garbage collection using System.gc() method

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Sy

stem.html#gc()

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.htmlgc()

Destructor
• Description

• Method with name finalize()

• The name is misleading as it does not destroy the objects

• Contains action performed when object is about to be freed

• Returns void

• Invoked automatically by garbage collector

• Not invoked if garbage collection does not occur

• Usually needed only for non-Java methods

• finalize is only called if the object is garbage collected, therefore there is
no guarantee that finalize will always be called as an object might not be
garbage-collected

• Destructors are used a lot in C++

• Example

class Foo {
void finalize() { … } // destructor for foo

}

© Department of Computer Science UMD

Initialization Block
• Definition

• Block of code used to initialize static & instance variables for

class

• Motivation

• Enable complex initializations for static variables

• Control flow

• Exceptions

• Share code between multiple constructors for same class

© Department of Computer Science UMD

Initialization Block Types
• Static initialization block

• Code executed when class is loaded

• A class is loaded when it is needed and it is loaded only once

(therefore static blocks only executed once)

• Initialization block

• Code executed when each object created

(at beginning of call to constructor)

• Example

class Foo {

static { A = 1; } // static initialization block

{ A = 2; } // initialization block

}

© Department of Computer Science UMD

Instance Variables Initialization
• Instance variables may be initialized

• At time of declaration

• In initialization block

• In constructor

• Order of initialization

1. Declaration, initialization block (in the same order as they appear in

the source code)

2. Constructor – overrides any other initializations

• Example: staticBlock package → VariableInitialization.java

• Example: staticBlock package → Person.java, PersonDriver.java

• By using a static block we only need to create a single MILLENIUM

object

• Example: nonStaticBlock package → Employee.java

© Department of Computer Science UMD

