
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Nested Classes

Department of Computer Science

University of Maryland, College Park

Java Classes
• Top level classes

• Declared inside package

• Visible throughout package, perhaps further

• Normally declared in their own file

• Public classes must be defined in their own file

• Not required for other classes (e.g., package)

• Example: other package→Car.java

• Nested Types

• Declared inside class or method

• Normally used only in outer (enclosing) class

• Can have wider visibility

© Department of Computer Science UMD

4 Nested Classes
1. Inner Class - Only applies to classes. Will not have the

keyword static

2. Local Classes - Only applies to classes. A class defined in

a block of Java code (e.g., body of a function)

3. Anonymous Class - Only applies to classes. Local class

without a name

4. Static Class - Can exist without outer class

© Department of Computer Science UMD

Inner Classes
• Description

• Class defined in scope of another class

• Should not have any static members

• Useful property

• Outer & inner class can directly access each other’s fields &

methods (even if private)

• Inside methods of outer class, use inner class as any other

class

• ic = new MyInnerClass()

© Department of Computer Science UMD

Inner Class Example
• Example (MyOuterClass and MyInnerClass are not Java

reserved words):

public class MyOuterClass {

private int x;

private class MyInnerClass {

private int y;

void foo() { x = 1; } // accessing private field

}

void bar() {

MyInnerClass ic = new MyInnerClass();

ic.y = 2; // accessing private field

}

}

© Department of Computer Science UMD

Method Invocations
• Method invocations on inner class

• Can be transparently redirected to outer instance

• Resolving method call on unspecified object

• See if method can be resolved on inner object

• If not, see if method can be resolved on corresponding

instance of outer object

• If nested multiple levels, keep on looking

© Department of Computer Science UMD

Accessing Outer Scope
• Example

public class MyOuter { // outer class

int x = 2;

private class MyInner { // inner class

int x = 6;

private void getX() { // inner class method

int x = 8;

System.out.println(x); // prints 8

System.out.println(this.x); // prints 6

System.out.println(MyOuter.this.x); // prints 2

}

}

}

© Department of Computer Science UMD

Inner Class Link To Outer Class
• Inner class instance

• Has association to an instance of outer class

• Must be instantiated with an enclosing instance

• Inner class instance cannot exist without outer class instance

• Is tied to outer class object at moment of creation

• Can not be changed

MyList MyList

MyIterator MyIterator MyIterator

© Department of Computer Science UMD

Inner Classes
• Useful for

• Private helper classes

• Logical grouping of functionality

• Data hiding

• Linkage to outer class

• Inner class object tied to outer class object

• E.g., wings of a plane

• Java Examples

• Iterator for Java Collections

• ActionListener for Java GUI widgets

© Department of Computer Science UMD

Iterator Example
• Team class example

public class Team {

private Player[] list;

private int size;

…

}

• Goal: Implement iterator for the class that allow us to access

the players

• We will see different versions that implement the iterator.

Using inner classes will simplify the iterator implementation

© Department of Computer Science UMD

Team Class Example
• Version 1

• No iterator

• Version 2

• Iterator implemented without inner class

• Illustrates problems of accessing private data of Team class

• Version 3

• Iterator implemented using inner class

© Department of Computer Science UMD

Team Class Example
• Version 4

• Iterator implemented using inner class with class implementing

Iterable<Player>

• Iterable interface defines the method Iterator<T> iterator()

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html

• Returns an iterator over a set of elements of type T

• Implementing this interface allows an object to be the target of the

enhanced for loop "foreach" statement

• Version 5

• Using a local class

• Version 6

• First let’s go over anonymous inner classes

• Example: anonymousClasses package

• Using an anonymous class

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html

Static Nested Class
• Similar to inner class, but declared as a static class

• No link to an instance of the outer class

• Can only access static fields & methods of the outer class

• Can have an instance of the static nested class in your

code even without having an instance of the outer class

• Similar to a top-level class, but nested for packaging

convenience

• Example: nestedStatic package

© Department of Computer Science UMD

Additional Examples
• Inner class :

• https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html

• Local class:

• https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html

• Anonymous class:

• https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html

© Department of Computer Science UMD

https://docs.oracle.com/javase/tutorial/java/javaOO/innerclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html

