
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Design

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Applying Object-Oriented Design
• We can use the term “message” to describe the interaction between

objects. Let’s see an example

• When designing a system based on a problem statement:

• Look at objects participating in system

• Find nouns in the problem statement (requirements &
specifications)

• Noun may represent class/variable(s) needed in the design

• Relationships (e.g., “has” or “belongs to”) may represent instance
variables

• Look at interactions between objects

• Find verbs in problem statement

• Verb may represent message between objects

• Design classes accordingly

• Determine relationship between classes

• Find state & methods needed for each class

© Department of Computer Science UMD

Step #1: Finding Classes
• Problem Statement

• Thermostat uses dial setting to control a heater to maintain
constant temperature in room

• Nouns

• Thermostat

• Dial setting

• Heater

• Temperature

• Room

• Analyze Each Noun

• Does noun represent a class needed in the design?

• Noun may be outside system

• Noun may describe state in class

© Department of Computer Science UMD

Analyzing Nouns
• Thermostat

• Central class in model

• Dial setting

• State in class (Thermostat)

• Heater

• Class in model

• Room

• Class in model

• Temperature

• State in class (Room)

Heater

Thermostat

Dial Setting

Room
Temperature

© Department of Computer Science UMD

Step #2: Finding Messages
• Thermostat uses dial setting to control a heater to maintain

constant temperature in room

• Verbs

• Uses

• Control

• Maintain

• Analyze each verb

• Does the verb represent interaction between objects?

• For each interaction

• Assign methods to classes to perform interaction

© Department of Computer Science UMD

Analyzing Verbs
• Uses

• “Thermostat uses dial setting…”

•  Thermostat.setDesiredTemp(int degrees)

• Control

• “To control a heater…”

•  Heater.turnOn()

•  Heater.turnOff()

• Maintain

• “To maintain constant temperature in room”

•  Room.getTemperature()

© Department of Computer Science UMD

Example Messages

Room

Thermostat

Heater

getTemperature()
turnOn()

turnOff()

setDesiredTemp()

© Department of Computer Science UMD

Resulting Classes
• Thermostat

• State - dialSetting

• Methods - setDesiredTemp()

• Heater

• State - heaterOn

• Methods - turnOn(), turnOff()

• Room

• State - temp

• Methods - getTemperature()

• The above design could have been described using UML Class

Diagrams

© Department of Computer Science UMD

is-a vs. has-a
• Say we have two classes: Engine and Car

• Two possible designs

• A Car object has a reference to an Engine object

• has-a

• The Car class is a subtype of Engine

• is-a

© Department of Computer Science UMD

Prefer Composition over Inheritance
• Generally, prefer composition/delegation (has-a) to subtyping (is-a)

• Subtyping is very powerful, but easy to overuse and can create

confusion and lead to mistakes

• Tempting to use subtyping in places where it doesn’t really make

conceptual sense to avoid having to delegate methods

• Don’t

• Let’s see an example where we have an Employee class and we

need to kinds of employees: salaried and hourly

• Should we use composition or inheritance?

© Department of Computer Science UMD

Immutable
• Define a class as immutable if possible

• Do not add set methods by default

• You have already seen how sharing of immutable objects

simplifies object duplication. Later on we will see additional

advantages of immutable classes when threads are interacting

with objects

© Department of Computer Science UMD

Pseudocode
• How about pseudocode?

© Department of Computer Science UMD

UML Class Diagrams
• Allow us to represent classes in our design

• There are Eclipse plugins for the generation of UML

Diagrams

© Department of Computer Science UMD

