CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity I

Department of Computer Science University of Maryland, College Park

Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space
- Measuring efficiency (two options)
 - Benchmarking
 - Approach
 - Pick some desired inputs
 - Actually run implementation of algorithm
 - Measure time & space needed
 - Asymptotic analysis

Benchmarking

- Advantages
 - Precise information for given configuration
 - Implementation, hardware, inputs
- Disadvantages
 - Affected by configuration
 - Data sets (often too small)
 - Dataset that was the right size 3 years ago is likely too small now
 - Hardware
 - Software
 - Affected by special cases (biased inputs)
 - Does not measure intrinsic efficiency

Asymptotic Analysis

- Approach
 - Mathematically analyze efficiency
 - Calculate time as function of input size n
 - Remove constant factors
 - Remove low order terms
 - We write $T \approx O(f(n))$
 - We say T is on the order of f(n)
 - "Big O" notation
- About "Big O"
 - Measures intrinsic efficiency
 - Dominates efficiency for large input sizes
 - The results are valid for large input data sets (large n)
 - Programming language, compiler, processor irrelevant
 - Represents the worst case

Search Comparison

- For number between 1...100
 - Simple algorithm = 50 steps
 - Binary search algorithm = log₂(n) = 7 steps
- For number between 1...100,000
 - Simple algorithm = 50,000 steps
 - Binary search algorithm = $\log_2(n)$ (about 17 steps)
- Binary search is much more efficient!

Comparing two linear functions

Size	Running Time	
	n/2	4n+3
64	32	259
128	64	515
256	128	1027
512	256	2051

Run time roughly doubles as input size doubles

- Comparing two functions
 - n/2 and 4n+3 behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size
- For large values of n
 - Time(2n) / Time(n) approaches exactly 2
- Both are O(n) programs
- Example: $2n + 100 \rightarrow O(n)$ (next slide)

• $2n + 100 \Rightarrow O(n)$

Comparing two quadratic functions

Size	Running Time	
	n²	2n ² + 8
2	4	16
4	16	40
8	64	132
16	256	520

Run time increases quadruples when doubling input size

- Comparing two functions
 - n^2 and $2n^2 + 8$ behave similarly
 - Run time increases quadratically with input size
- For large values of n
 - Time(2n) / Time(n) approaches 4 (time quadruples)
- Both are O(n²) programs
- **Example:** $\frac{1}{2}$ n2 + 100 n \rightarrow O(n2) (next slide)
- Example: TimeExpQuadratic.java

—<mark>—</mark>— nlog(n) —<u>∆</u>— n^2 —— 1/2 n^2 + 100 n

Comparing two log functions

Size	Running Time	
	log ₂ (n)	5 * log ₂ (n) + 3
64	6	33
128	7	38
256	8	43
512	9	48

Run time roughly increases by constant as input size doubles

- Comparing two functions
 - $log_2(n)$ and 5 * $log_2(n)$ + 3 behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size
- For large values of n
 - Time(2n) Time(n) approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor

 $\log_a N = (\log_b N) / (\log_b a)$

Both are O(log(n)) programs

Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

Formal Definition of Big-O

- Function f(n) is O(g(n)) if
 - For some positive constants M, N₀
 - $M \times g(n) \ge f(n)$, for all $n \ge N_0$
- Intuitively
 - For some coefficient M & all data sizes $\ge N_0$
 - $M \times g(n)$ is always greater than f(n)

Big-O Examples

- $2n^2$ + 10n + 1000 \Rightarrow O(n²)
 - Select M = 4, $N_0 = 100$
 - For $n \ge 100$
 - $4n^2 \ge 2n^2 + 10n + 1000$ is always true
 - Example \Rightarrow for n = 100
 - $40000 \ge 20000 + 1000 + 1000$

Observations

For large values of n (extremely important)

- Any O(log(n)) algorithm is faster than O(n)
- Any O(n) algorithm is faster than O(n²)
- Asymptotic complexity fundamental measure of efficiency
- Big-O results only valid for big values of n

Asymptotic Complexity Categories

Complexity

- O(1)
- O(log(n))
- O(n)
- O(n log(n))
- O(<mark>n</mark>²)
- O(<mark>n</mark>³)
- O(<mark>n</mark>k)
- O(<mark>k</mark>ⁿ)
- O(n!)
- O(<mark>n</mark>n)

<u>Name</u>

- Constant Logarithmic
- Linear
- N log N
- Quadratic
- Cubic
- Polynomial
- Exponential
- Factorial
- N to the N

Example

Array access

- Binary search
- Largest element
- **Optimal Comparison Base sort**
- 2D Matrix addition
- 2D Matrix multiply
- Linear programming
- Integer programming
 - Brute-force search TSP

From smallest to largest, for size n, constant k > 1

Complexity Category Example

Complexity Category Example

Calculating Asymptotic Complexity

- As n increases
 - Highest complexity term dominates
 - Can ignore lower complexity terms
- Examples
 - 2n + 100
 - **10**n + nlog(n)
 - 100n + ½n²
 - 100n² + n³
 - 1/1002ⁿ + 100n⁴

- $\Rightarrow O(n)$ $\Rightarrow O(n \log n)$
- $\Rightarrow O(nlog(n))$
- $\Rightarrow O(n^2)$
- $\Rightarrow O(n^3)$
- $\Rightarrow O(2^n)$

Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized

Best/Worst Case Analysis

- Best case
 - Smallest number of steps required
 - Not very useful
 - Example \Rightarrow Find item in first place checked
- Worst case
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example \Rightarrow Find item in last place checked

Quicksort Example

- Quicksort
 - One of the fastest comparison sorts
 - Frequently used in practice
- Quicksort algorithm
 - Pick pivot value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists
- Quicksort properties
 - Average case = O(nlog(n))
 - Worst case = O(n²)
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list
- Can avoid worst-case behavior
 - Select random pivot value

Average Case Analysis

- Average case analysis
 - Number of steps required for "typical" case
 - Most useful metric in practice
 - Different approaches: average case, expected case
- Average case (assumes input have same probability)
 - Average over all possible inputs
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps
- Expected case (based on probability of each input)
 - Weighted average over all possible inputs
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps

Amortized Analysis

- Approach
 - Applies to worst-case sequences of operations
 - Finds average running time per operation
 - Example
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps
- Assumptions
 - Can predict possible sequence of operations
 - Know when worst-case operations are needed
 - Does not require knowledge of probability
- By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)