Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space
- Measuring efficiency (two options)
 - Benchmarking
 - Approach
 - Pick some desired inputs
 - Actually run implementation of algorithm
 - Measure time & space needed
 - Asymptotic analysis
Benchmarking

- **Advantages**
 - Precise information for given configuration
 - Implementation, hardware, inputs

- **Disadvantages**
 - Affected by configuration
 - Data sets (often too small)
 - Dataset that was the right size 3 years ago is likely too small now
 - Hardware
 - Software
 - Affected by special cases (biased inputs)
 - Does not measure intrinsic efficiency
Asymptotic Analysis

• Approach
 • **Mathematically analyze efficiency**
 • Calculate time as function of input size n
 • Remove constant factors
 • Remove low order terms
 • We write $T \approx O(f(n))$
 • We say T is on the order of $f(n)$
 • “Big O” notation

• About “Big O”
 • Measures intrinsic efficiency
 • **Dominates efficiency for large input sizes**
 • The results are valid for large input data sets (large n)
 • Programming language, compiler, processor irrelevant
 • Represents the worst case
Search Comparison

• For number between 1…100
 • Simple algorithm = 50 steps
 • Binary search algorithm = $\log_2(n)$ = 7 steps

• For number between 1…100,000
 • Simple algorithm = 50,000 steps
 • Binary search algorithm = $\log_2(n)$ (about 17 steps)

• Binary search is **much** more efficient!
Asymptotic Complexity

- Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>

Run time roughly doubles as input size doubles
Asymptotic Complexity

• Comparing two functions
 • n/2 and 4n+3 behave similarly
 • Run time roughly doubles as input size doubles
 • Run time increases linearly with input size
• For large values of n
 • Time(2n) / Time(n) approaches exactly 2
• Both are O(n) programs
• Example: 2n + 100 \(\rightarrow\) O(n) (next slide)
Complexity Example

- $2n + 100 \Rightarrow O(n)$
Asymptotic Complexity

- Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>

Run time increases **quadruples** when doubling input size.
Asymptotic Complexity

• Comparing two functions
 • \(n^2 \) and \(2n^2 + 8 \) behave similarly
 • Run time increases \textit{quadratically} with input size
• For large values of \(n \)
 • \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches 4 (time quadruples)
• Both are \(O(n^2) \) programs
• \textbf{Example:} \(\frac{1}{2} n^2 + 100 \) n \(\rightarrow \) \(O(n^2) \) (next slide)
• \textbf{Example:} \(\text{TimeExpQuadratic.java} \)
Complexity Examples

• $\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2)$
Asymptotic Complexity

- Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\log_2(n))</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>

Run time roughly increases by constant as input size doubles.
Asymptotic Complexity

- Comparing two functions
 - \(\log_2(n) \) and \(5 \times \log_2(n) + 3 \) behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size

- For large values of \(n \)
 - Time(2n) - Time(n) approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 - \(\log_a N = (\log_b N) / (\log_b a) \)
 - Both are \(O(\log(n)) \) programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

![Graph showing # steps vs input size with O(...) and f(n) curves.](attachment:image.png)
Formal Definition of Big-O

- Function \(f(n) \) is \(O(g(n)) \) if
 - For some positive constants \(M, N_0 \)
 - \(M \times g(n) \geq f(n) \), for all \(n \geq N_0 \)
- Intuitively
 - For some coefficient \(M \) & all data sizes \(\geq N_0 \)
 - \(M \times g(n) \) is always greater than \(f(n) \)
Big-O Examples

• \(2n^2 + 10n + 1000 \Rightarrow O(n^2)\)
 • Select \(M = 4, N_0 = 100\)
 • For \(n \geq 100\)
 • \(4n^2 \geq 2n^2 + 10n + 1000\) is always true
 • Example \(\Rightarrow\) for \(n = 100\)
 • \(40000 \geq 20000 + 1000 + 1000\)
Observations

• For large values of n (extremely important)
 • Any $O(\log(n))$ algorithm is faster than $O(n)$
 • Any $O(n)$ algorithm is faster than $O(n^2)$
• Asymptotic complexity - fundamental measure of efficiency
• Big-O results only valid for big values of n
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>$O(n \log(n))$</td>
<td>N log N</td>
<td>Optimal Comparison Base sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>$O(k^n)$</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>$O(n^n)$</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest, for size n, constant $k > 1$
Complexity Category Example

- 2^n
- n^2
- $n\log(n)$
- n
- $\log(n)$
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>3</td>
<td>n^2</td>
</tr>
<tr>
<td>4</td>
<td>$n\log(n)$</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>$\log(n)$</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

© Department of Computer Science UMD
Calculating Asymptotic Complexity

• As n increases
 • Highest complexity term dominates
 • Can ignore lower complexity terms

• Examples
 • $2n + 100 \Rightarrow O(n)$
 • $10n + n\log(n) \Rightarrow O(n\log(n))$
 • $100n + \frac{1}{2}n^2 \Rightarrow O(n^2)$
 • $100n^2 + n^3 \Rightarrow O(n^3)$
 • $\frac{1}{100}2^n + 100n^4 \Rightarrow O(2^n)$
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized
Best/Worst Case Analysis

- **Best case**
 - **Smallest number of steps required**
 - Not very useful
 - Example ⇒ Find item in first place checked

- **Worst case**
 - **Largest number of steps required**
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example ⇒ Find item in last place checked
Quicksort Example

• Quicksort
 • One of the fastest comparison sorts
 • Frequently used in practice
• Quicksort algorithm
 • Pick pivot value from list
 • Partition list into values smaller & bigger than pivot
 • Recursively sort both lists
• Quicksort properties
 • Average case = O(nlog(n))
 • Worst case = O(n^2)
 • Pivot ≈ smallest / largest value in list
 • Picking from front of nearly sorted list
• Can avoid worst-case behavior
 • Select random pivot value
Average Case Analysis

- **Average case analysis**
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches: average case, expected case
- **Average case (assumes input have same probability)**
 - Average over all possible inputs
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps
- **Expected case (based on probability of each input)**
 - Weighted average over all possible inputs
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Amortized Analysis

• **Approach**
 - Applies to worst-case *sequences* of operations
 - Finds average running time per operation
 - Example
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps

• **Assumptions**
 - Can predict possible sequence of operations
 - Know when worst-case operations are needed
 - Does not require knowledge of probability

• By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)