CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park

Algorithm Efficiency

- Efficiency
- Amount of resources used by algorithm
- Time, space
- Measuring efficiency (two options)
- Benchmarking
- Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time \& space needed
- Asymptotic analysis

Benchmarking

- Advantages
- Precise information for given configuration
- Implementation, hardware, inputs
- Disadvantages
- Affected by configuration
- Data sets (often too small)
- Dataset that was the right size 3 years ago is likely too small now
- Hardware
- Software
- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency

Asymptotic Analysis

- Approach
- Mathematically analyze efficiency
- Calculate time as function of input size n
- Remove constant factors
- Remove low order terms
- We write $T \approx O(f(n))$
- We say T is on the order of $f(n)$
- "Big O" notation
- About "Big O"
- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
- The results are valid for large input data sets (large n)
- Programming language, compiler, processor irrelevant
- Represents the worst case

Search Comparison

- For number between 1... 100
- Simple algorithm = 50 steps
- Binary search algorithm $=\log _{2}(\mathrm{n})=7$ steps
- For number between 1...100,000
- Simple algorithm $=50,000$ steps
- Binary search algorithm $=\log _{2}(\mathrm{n})$ (about 17 steps)
- Binary search is much more efficient!

Asymptotic Complexity

- Comparing two linear functions

Size	Running Time	
	$\mathrm{n} / 2$	$4 \mathrm{n}+3$
64	32	259
128	64	515
256	128	1027
512	256	2051

Run time roughly doubles as input size doubles

Asymptotic Complexity

- Comparing two functions
- $n / 2$ and $4 n+3$ behave similarly
- Run time roughly doubles as input size doubles
- Run time increases linearly with input size
- For large values of n
- Time(2n) / Time(n) approaches exactly 2
- Both are O(n) programs
- Example: $2 \mathrm{n}+100 \rightarrow \mathrm{O}(\mathrm{n})$ (next slide)

Complexity Example

- $2 \mathrm{n}+100 \Rightarrow \mathrm{O}(\mathrm{n})$

$$
-\square n-\Delta-n \log (n)-2 n+100
$$

Asymptotic Complexity

- Comparing two quadratic functions

Size	Running Time	
	n^{2}	$2 \mathrm{n}^{2}+8$
2	4	16
4	16	40
8	64	132
16	256	520

Run time increases quadruples when doubling input size

Asymptotic Complexity

- Comparing two functions
- n^{2} and $2 n^{2}+8$ behave similarly
- Run time increases quadratically with input size
- For large values of n
- Time(2n) / Time(n) approaches 4 (time quadruples)
- Both are $O\left(n^{2}\right)$ programs
- Example: $1 / 2 \mathrm{n} 2+100 \mathrm{n} \rightarrow \mathrm{O}(\mathrm{n} 2)$ (next slide)
- Example: TimeExpQuadratic.java

Complexity Examples

$-1 / 2 n^{2}+100 n \Rightarrow O\left(n^{2}\right)$

$$
-n \log (n)-\Delta n^{\wedge} 2 \cdots-1 / 2 n^{\wedge} 2+100 n
$$

Asymptotic Complexity

- Comparing two log functions

Size	Running Time	
	$\log _{2}(\mathrm{n})$	$5^{*} \log _{2}(\mathrm{n})+3$
64	6	33
128	7	38
256	8	43
512	9	48

Run time roughly increases by constant as input size doubles

Asymptotic Complexity

- Comparing two functions
- $\log _{2}(\mathrm{n})$ and $5{ }^{*} \log _{2}(\mathrm{n})+3$ behave similarly
- Run time roughly increases by constant as input size doubles
- Run time increases logarithmically with input size
- For large values of n
- Time(2n) - Time(n) approaches constant
- Base of logarithm does not matter
- Simply a multiplicative factor

$$
\log _{a} N=\left(\log _{b} N\right) /\left(\log _{b} a\right)
$$

- Both are $\mathrm{O}(\log (\mathrm{n}))$ programs

Big-O Notation

- Represents
- Upper bound on number of steps in algorithm
- For sufficiently large input size
- Intrinsic efficiency of algorithm for large inputs

input size

Formal Definition of Big-O

- Function $f(n)$ is $O(g(n))$ if
- For some positive constants $\mathrm{M}, \mathrm{N}_{0}$
- $M \times g(n) \geq f(n)$, for all $n \geq N_{0}$
- Intuitively
- For some coefficient M \& all data sizes $\geq N_{0}$
- $\mathrm{M} \times \mathrm{g}(\mathrm{n})$ is always greater than $\mathrm{f}(\mathrm{n})$

Big-O Examples

- $2 \mathrm{n}^{2}+10 \mathrm{n}+1000 \Rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$
- Select $M=4, N_{0}=100$
- For $\mathrm{n} \geq 100$
- $4 n^{2} \geq 2 n^{2}+10 n+1000$ is always true
- Example \Rightarrow for $\mathrm{n}=100$
- $40000 \geq 20000+1000+1000$

Observations

- For large values of \mathbf{n} (extremely important)
- Any $O(\log (n))$ algorithm is faster than $O(n)$
- Any $\mathrm{O}(\mathrm{n})$ algorithm is faster than $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Asymptotic complexity - fundamental measure of efficiency
- Big-O results only valid for big values of n

Asymptotic Complexity Categories

$\mathrm{O}(1)$
- O(log(n))
- O(n)
- O(n log(n))
- O(n²)
- O(n³)
- O(nk)
- O(kn)
- O(n!)
- O(nn)

Name
Constant
Logarithmic
Linear
$N \log N$
Quadratic
Cubic
Polynomial
Exponential
Factorial
N to the N

Example

Array access
Binary search
Largest element
Optimal Comparison Base sort
2D Matrix addition
2D Matrix multiply
Linear programming
Integer programming
Brute-force search TSP

From smallest to largest, for size n, constant $k>1$

Complexity Category Example

Complexity Category Example

Calculating Asymptotic Complexity

- As n increases
- Highest complexity term dominates
- Can ignore lower complexity terms
- Examples
- $2 n+100$
- $10 n+n \log (n)$
- $100 n+1 / 2 n^{2}$
- $100 n^{2}+n^{3}$
- $1 / 1002^{n}+100 n^{4}$
$\Rightarrow \mathrm{O}(\mathrm{n})$
$\Rightarrow \mathrm{O}(\mathrm{nlog}(\mathrm{n}))$
$\Rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$
$\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$
$\Rightarrow \mathrm{O}\left(2^{\mathrm{n}}\right)$

Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
- Best case
- Worst case
- Average case
- Amortized

Best/Worst Case Analysis

- Best case
- Smallest number of steps required
- Not very useful
- Example \Rightarrow Find item in first place checked
- Worst case
- Largest number of steps required
- Useful for upper bound on worst performance
- Real-time applications (e.g., multimedia)
- Quality of service guarantee
- Example \Rightarrow Find item in last place checked

Quicksort Example

- Quicksort
- One of the fastest comparison sorts
- Frequently used in practice
- Quicksort algorithm
- Pick pivot value from list
- Partition list into values smaller \& bigger than pivot
- Recursively sort both lists
- Quicksort properties
- Average case = O(nlog(n))
- Worst case $=O\left(n^{2}\right)$
- Pivot \approx smallest / largest value in list
- Picking from front of nearly sorted list
- Can avoid worst-case behavior
- Select random pivot value

Average Case Analysis

- Average case analysis
- Number of steps required for "typical" case
- Most useful metric in practice
- Different approaches: average case, expected case
- Average case (assumes input have same probability)
- Average over all possible inputs
- Example
- Case 1 = 10 steps, Case 2 = 20 steps
- Average = 15 steps
- Expected case (based on probability of each input)
- Weighted average over all possible inputs
- Example
- Case 1 (90\%) = 10 steps, Case 2 (10\%) = 20 steps
- Average = 11 steps

Amortized Analysis

- Approach
- Applies to worst-case sequences of operations
- Finds average running time per operation
- Example
- Normal case $=10$ steps
- Every $10^{\text {th }}$ case may require 20 steps
- Amortized time = 11 steps
- Assumptions
- Can predict possible sequence of operations
- Know when worst-case operations are needed
- Does not require knowledge of probability
- By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)

