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Algorithm Efficiency
• Efficiency

• Amount of resources used by algorithm

• Time, space

• Measuring efficiency (two options)

• Benchmarking

• Approach

• Pick some desired inputs

• Actually run implementation of algorithm

• Measure time & space needed

• Asymptotic analysis
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Benchmarking
• Advantages

• Precise information for given configuration

• Implementation, hardware, inputs

• Disadvantages

• Affected by configuration

• Data sets (often too small)

• Dataset that was the right size 3 years ago is likely too 
small now

• Hardware

• Software

• Affected by special cases (biased inputs)

• Does not measure intrinsic efficiency
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Asymptotic Analysis
• Approach

• Mathematically analyze efficiency

• Calculate time as function of input size n

• Remove constant factors

• Remove low order terms

• We write T  O( f(n) )

• We say T is on the order of f(n)

• “Big O” notation

• About “Big O”

• Measures intrinsic efficiency

• Dominates efficiency for large input sizes

• The results are valid for large input data sets (large n)

• Programming language, compiler, processor irrelevant

• Represents the worst case
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Search Comparison
• For number between 1…100

• Simple algorithm = 50 steps

• Binary search algorithm = log2( n ) = 7 steps

• For number between 1…100,000

• Simple algorithm = 50,000 steps

• Binary search algorithm = log2( n ) (about 17 steps)

• Binary search is much more efficient!
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Asymptotic Complexity
• Comparing two linear functions

Size Running Time

n/2 4n+3

64 32 259

128 64 515

256 128 1027

512 256 2051
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Asymptotic Complexity
• Comparing two functions

• n/2 and 4n+3 behave similarly

• Run time roughly doubles as input size doubles

• Run time increases linearly with input size

• For large values of n

• Time(2n) / Time(n) approaches exactly 2

• Both are O(n) programs

• Example: 2n + 100 → O(n) (next slide)
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Complexity Example
• 2n + 100  O(n)
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Asymptotic Complexity
• Comparing two quadratic functions

Size Running Time

n2 2n2 + 8

2 4 16

4 16 40

8 64 132

16 256 520
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Asymptotic Complexity
• Comparing two functions

• n2 and 2n2 + 8 behave similarly

• Run time increases quadratically with input size

• For large values of n

• Time(2n) / Time(n) approaches 4 (time quadruples)

• Both are O( n2 ) programs

• Example: ½ n2 + 100 n → O(n2) (next slide)

• Example: TimeExpQuadratic.java
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Complexity Examples
• ½ n2 + 100 n  O(n2)
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Asymptotic Complexity
• Comparing two log functions

Size Running Time

log2( n ) 5 * log2( n ) + 3

64 6 33

128 7 38

256 8 43

512 9 48
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Asymptotic Complexity
• Comparing two functions

• log2( n ) and 5 * log2( n ) + 3 behave similarly

• Run time roughly increases by constant as input size 

doubles

• Run time increases logarithmically with input size

• For large values of n

• Time(2n) - Time(n) approaches constant

• Base of logarithm does not matter

• Simply a multiplicative factor

logaN = (logbN) / (logba) 

• Both are O( log(n) ) programs
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Big-O Notation
• Represents

• Upper bound on number of steps in algorithm

• For sufficiently large input size

• Intrinsic efficiency of algorithm for large inputs

f(n)

O(…)

input size

# steps
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Formal Definition of Big-O
• Function f(n) is ( g(n) ) if

• For some positive constants M, N0

• M  g(n)  f(n), for all n  N0

• Intuitively

• For some coefficient M & all data sizes  N0

• M  g(n) is always greater than f(n)
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Big-O Examples
• 2n2 + 10n + 1000  O(n2)

• Select M = 4, N0 = 100

• For n  100

• 4n2  2n2 + 10n + 1000 is always true

• Example  for n = 100

• 40000  20000 + 1000 + 1000
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Observations
• For large values of n (extremely important)

• Any O(log(n)) algorithm is faster than O(n)

• Any O(n) algorithm is faster than O(n2)

• Asymptotic complexity - fundamental measure of efficiency

• Big-O results only valid for big values of n
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Asymptotic Complexity Categories 

Complexity Name Example

• O(1) Constant Array access

• O(log(n)) Logarithmic Binary search

• O(n) Linear Largest element

• O(n log(n)) N log N Optimal Comparison Base sort

• O(n2) Quadratic 2D Matrix addition

• O(n3) Cubic 2D Matrix multiply

• O(nk) Polynomial Linear programming

• O(kn) Exponential Integer programming

• O(n!) Factorial Brute-force search TSP

• O(nn) N to the N

From smallest to largest, for size n, constant k > 1

© Department of Computer Science UMD



Complexity Category Example
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Complexity Category Example
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Calculating Asymptotic Complexity
• As n increases

• Highest complexity term dominates

• Can ignore lower complexity terms

• Examples

• 2n + 100  O(n)

• 10n + nlog(n)  O(nlog(n))

• 100n + ½n2  O(n2)

• 100n2 + n3  O(n3)

• 1/1002n + 100n4  O(2n)
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Types of Case Analysis
• Can analyze different types (cases) of algorithm behavior

• Types of analysis

• Best case

• Worst case

• Average case

• Amortized
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Best/Worst Case Analysis
• Best case

• Smallest number of steps required

• Not very useful 

• Example  Find item in first place checked

• Worst case

• Largest number of steps required

• Useful for upper bound on worst performance

• Real-time applications (e.g., multimedia)

• Quality of service guarantee

• Example  Find item in last place checked
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Quicksort Example
• Quicksort

• One of the fastest comparison sorts

• Frequently used in practice

• Quicksort algorithm

• Pick pivot value from list

• Partition list into values smaller & bigger than pivot

• Recursively sort both lists

• Quicksort properties

• Average case = O(nlog(n))

• Worst case = O(n2)

• Pivot  smallest / largest value in list

• Picking from front of nearly sorted list

• Can avoid worst-case behavior

• Select random pivot value
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Average Case Analysis
• Average case analysis

• Number of steps required for “typical” case

• Most useful metric in practice

• Different approaches: average case, expected case

• Average case (assumes input have same probability)

• Average over all possible inputs

• Example

• Case 1 = 10 steps, Case 2 = 20 steps

• Average = 15 steps

• Expected case (based on probability of each input)

• Weighted average over all possible inputs

• Example

• Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps

• Average = 11 steps
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Amortized Analysis 
• Approach

• Applies to worst-case sequences of operations

• Finds average running time per operation

• Example

• Normal case = 10 steps

• Every 10th case may require 20 steps

• Amortized time = 11 steps 

• Assumptions

• Can predict possible sequence of operations

• Know when worst-case operations are needed

• Does not require knowledge of probability

• By using amortized analysis we can show the best way to grow 
an array is by doubling its size (rather than increasing by adding 
one entry at a time)
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