
CMSC 132: 

OBJECT-ORIENTED PROGRAMMING II

Collections

Department of Computer Science

University of Maryland, College Park



Collection
• Programs represent and manipulate abstractions (chunks of 

information)

• Examples: roster of students, deck of cards

• One of the most universal abstractions is a collection

• Represents an aggregation of multiple objects

• Plus, perhaps, a relation between elements 

• Examples: list, set, ordered set, map, array, tree

• Supporting different operations

© Department of Computer Science UMD



Data Structures
• Data structure

• A way of representing & storing information

• Choice of data structure affects

• Abstractions supported

• Amount of storage required

• Which operations can be efficiently performed

• Collections may be implemented using many different data 

structures

© Department of Computer Science UMD



Java Collection Framework (JCF)
• Java provides several interfaces and classes for 

manipulating & organizing data

• Example: List, Set, Map interfaces

• Java Collection Framework consists of

• Interfaces

• Abstract data types

• Implementations

• Reusable data structures

• Algorithms

• Reusable functionality

© Department of Computer Science UMD



Collection Hierarchy

Interface (red)

Class (black)

© Department of Computer Science UMD



Collection Interface
• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html

• Core operations

• Add element

• Remove element

• Determine size (# of elements)

• Iterate through all elements

• Additional operations supported by some collections

• Find first element

• Find kth element

• Find largest element

• Sort elements

• Collection vs. Collections

• Collections is a class

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html

