
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Linear Data Structures

Department of Computer Science

University of Maryland, College Park

Information
• Linked lists summary

• http://www.cs.umd.edu/~nelson/classes/resources/LinkedLists/

© Department of Computer Science UMD

http://www.cs.umd.edu/~nelson/classes/resources/LinkedLists/

List Implementations
• Two basic implementation techniques for lists

• Store elements in an array

• Store as a linked list

• Place each element in a separate object (node)

• Node contains reference to other node(s)

• Link nodes together

• Node head → points to first node

• Example: Class definitions in MyLinkedList.java code distribution

Class Node {
Object data;
Node next;

}

© Department of Computer Science UMD

Array vs. LinkedList Implementations
• Array

• Advantages

• Can efficiently access element at any position (O(1))

• Efficient use of space (space just to hold reference to

each element)

• Disadvantages

• Expensive to grow / shrink array

• Can amortize cost (grow / shrink in spurts)

• Expensive to insert / remove elements in middle (O(n))

• Tricky to insert / remove elements at both ends

© Department of Computer Science UMD

Array vs. LinkedList Implementations
• LinkedList

• Advantages

• Can efficiently insert / remove elements anywhere

• Disadvantages

• Cannot efficiently access element at any position

• Need to traverse list to find element (O(n))

• Less efficient use of space

• 1-2 additional references per element

© Department of Computer Science UMD

Implementing Linked List Code
• Drawing diagrams can help you to understand the steps needed

to complete a task and the order of the steps (order makes a

difference for some linked list tasks)

• Make sure that you check your code works for different scenarios

• Typical Scenarios

• List is empty

• List has only one element

• Processing takes place at the beginning or end of the list (e.g.,

insertion)

© Department of Computer Science UMD

Implementing Linked List Code
• Most tasks (insert, delete, find, etc.) you need to implement using a linked list

can be implemented using one of the following approaches:

• Print traversal, Prev/Curr Traversal, Recursion

• Print traversal - Loop that visits every element of the list. We like to call it the

“print traversal” as it is the traversal you use when printing a list. If in the worst

case (e.g., find) you need to visit every node of the list, without modifying it,

then chances are this loop will take care of the task

Node curr = head;

while (curr != null) {

/* Process data (e.g., curr.data) */

curr = curr.next; /* Move to next element */

}

• Updating the loop expression to curr.next != null will allow you to have a

reference to the last node after the loop is over if the list is not empty

© Department of Computer Science UMD

Implementing Linked List Code
• Prev/Curr “Tom and Jerry” Traversal - Loop that visits every element

of the list using two references: curr (has the address of the current
element been processed) and prev (points to the element that precedes
the current one). If you need to modify the list (e.g., remove or insert an
element) usually you need to update references of the node preceding
the current one. In this loop prev will follow curr (Tom will follow Jerry
☺). prev and curr move in parallel

Node prev = null, curr = head; /* Element preceding head is null */

while (curr != null) {

/* Processing here */

prev = curr; /* Adjusting prev to current element */

curr = curr.next; /* Moving to next element */

}

© Department of Computer Science UMD

Implementing Linked List Code
• Recursion - Some problems can be easily solved using recursion (e.g., printing

a list in reverse order). For problems involving recursion, you will use an
auxiliary method to satisfy the recursive requirement. The following is an
example of a recursive method that returns a string with the data elements. We
are assuming you cannot add instance/static variable to support the recursion

public String getListString() {

return getListString(head);

}

// Auxiliary method that satisfies the recursion requirement

private String getListString(Node headAux) {

if (headAux == null) {

return "";

}

return headAux.data + " " + getListString(headAux.next);

}

© Department of Computer Science UMD

Linked List Code
• Let’s take a look at some operations implemented using linked list

code. After this slide you will find diagrams similar to the ones we will

draw for some of the methods we will discuss

• Example: MyLinkedList.java

© Department of Computer Science UMD

Linked List – Insert (After Cursor)

1. Original list & new element temp

2. Modify temp.next → cursor.next

© Department of Computer Science UMD

Linked List – Insert (After Cursor)

3. Modify cursor.next → temp

4. Modify cursor → temp

© Department of Computer Science UMD

Linked List – Delete (Cursor)

1. Find before such that before.next = cursor

2. Modify before.next → cursor.next

© Department of Computer Science UMD

Linked List – Delete (Cursor)

3. Delete cursor

4. Modify cursor → before.next

© Department of Computer Science UMD

Maintaining List Sorted
• One approach to maintain a linked list sorted with every insertion is

• If the list is empty

• Just make the element the first of the list (insertion is trivial)

• Otherwise

• Traverse the list until you find an element (B) larger than the

one you want to insert (A)

• Once you find B, insert A before B

• If you don’t find B, A will become the last element of the list

• Let’s see an example

© Department of Computer Science UMD

Doubly Linked List
• Linked list where element has predecessor & successor

• Structure

Class Node {

Object data;

Node next;

Node previous;

}

• Issues

• Easy to find preceding / succeeding elements

• Extra work to maintain links (for insert / delete)

• More storage per node

© Department of Computer Science UMD

Doubly Linked List – Insertion
• Example

• Must update references in both predecessor and successor

nodes

© Department of Computer Science UMD

