
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

State Design Pattern / Dynamic Systems

Department of Computer Science

University of Maryland, College Park

State Pattern
• Definition

• Represent change in an object’s behavior using its member classes

• Where to use & benefits

• Control states without many if-else statements

• Represent states using classes

• Every state has to act in a similar manner

• Simplify and clarify the program

• Example

• States representing finite state machine (FSM)

• Original

• Each method chooses action depending on state

• Behavior may be confusing, state is implicit

• Using pattern

• State interface defines list of actions for state

• Define inner classes implementing State interface

• Finite state machine instantiates each state and tracks its current state

• Current state used to choose action

• Example: StateCode

© Department of Computer Science UMD

State Example – Original Code
public class FickleFruitVendor {

boolean wearingHat;

boolean isHatOn() { return wearingHat; }

String requestFruit() {

if (wearingHat) {

wearingHat = false;

return "Banana";

} else {

wearingHat = true;

return "Apple";

}

}

}

Wearing
Hat

Not
Wearing

Hat

Banana

Apple

© Department of Computer Science UMD

State Example
public interface State {

boolean isHatOn();
String requestFruit();

}

public class FickleFruitVendor {
State wearingHat = new WearingHat();
State notWearingHat = new
NotWearingHat();

// track current state of Vendor
State currentState = wearingHat;

// behavior depends on current state
public boolean isHatOn() {

return currentState.isHatOn();
}
public String requestFruit() {

return currentState.requestFruit();
}

// Inner class

public class WearingHat implements State {
boolean isHatOn() { return true; }
String requestFruit() {

// change state
currentState = notWearingHat;
return "Banana";

}
}

// Inner class
public class NotWearingHat implements State {

boolean isHatOn() { return false; }
String requestFruit() {

// change state
currentState = wearingHat;
return "Apple";

}
}

} // End of FickleFruitVendor class

Wearing
Hat

Not
Wearing

Hat

Banana

Apple

© Department of Computer Science UMD

Dynamic Systems
• Dynamic Systems: Systems that change dynamically over time. Such

systems arise naturally when writing programs involving graphical user

interfaces (video games, interactive graphics). Some issues:

• How does the system respond to external events or stimuli? Called

reactive or event-driven systems.

• State transition: Most dynamic systems are defined in terms of

information called its state.

• What are the possible states the system can be in?

• What sorts of state transitions are possible, and under what

circumstances do transitions occur?

• What actions are performed in each state?

© Department of Computer Science UMD

Dynamic Systems
• Examples:

DVD Player/Recorder: Behavior to remote control commands varies

depending on the operating state: recording, playback, idle.

Figure drawing program: (e.g. Paint) The meaning of mouse actions

depends on the drawing state: line, curve, ellipse, rectangle, polygon.

Video game: The meaning of user inputs depends on the current context in

which the game is operating.

Digital watch: Has various modes (clock, stop watch, timer) and the

meaning of buttons varies with the mode.

• How do we design programs for such event-driven systems?

drag ellipse moderectangle mode

© Department of Computer Science UMD

State Transition Systems
• These systems have a number of elements in common:

Events: Inputs/Stimuli come in the form of events (rather than traditional text

prompt + text input).

State: The behavior depends on internal information (which the user

cannot see) called the system’s state or context.

Transitions: Events can cause changes in the context and other state

information.

Actions: Actions (which the user may or may not see) are performed in

response to each event/transition.

(Spontaneous actions): Some actions take place without any user input.

(Example: animation in a video game.) These can be modeled as

responses to system-generated events, like timer events.

© Department of Computer Science UMD

Calculator
• Let us consider the case of a simple interactive calculator.

Events: occur when user hits the keys.

State: Operands, memory, internal state of

the computation (more about this later).

Actions: Perform calculations, update the display.

• What internal state information is needed?

• Example: “ 3 4 + 5 6 = ”

When the “=” is processed, the calculator

has saved the following information internally:

First operand: “34” (call this v1)

Operator: “+” (call this op)

Second operand: “56” (call this v2)

• It must also know which operand it is reading, first or second.

© Department of Computer Science UMD

Calculator
• Calculator: Has three states, or contexts:

Reading-First-Operand (RFO): reading digits for the first operand.

Reading-Second-Operand (RSO): reading digits for the second operand.

Error (ERR): An error occurs (e.g., invalid operand or divide by 0).

• Example:

© Department of Computer Science UMD

State-Transition Diagram
• How does the calculator know what operation to perform with each event?

This is based on its state, or context (RFO, RSO, ERR).

• We can describe the behavior using a state-transition diagram.

• Nodes: represent possible states the system can be in. A black circle is

the initial or starting state.

• Arcs or Edges: represent possible transitions. Each is labeled with a pair

“Event/Action” where:

• Event: event that triggers the transition.

• Action: action/computation performed as a result of the event.

© Department of Computer Science UMD

(Simplified) State-Transition Diagram

© Department of Computer Science UMD

Programming State-Transition Diagrams
• You can use if-the-else and/or switch statements to control the processing.

• Example:

if (event == X) { // some event X encountered

switch (state) {

case STATE1:

// processing for event X in state 1

break;

case STATE2:

// processing for event X in state 2

break;

}

} else if (event == Y) { // event Y encountered

// same thing

} // etc…

• You can use the state design pattern

© Department of Computer Science UMD

