CMSC 132
OBJECT-ORIENTED PROGRAMMING Il

287, State Design Pattern / Dynamic Systems

O% DS Owc\
Department of Computer Science
% S

TRYLP University of Maryland, College Park

© Department of Computer Science UMD

State Pattern

- Definition
- Represent change in an object’s behavior using its member classes
- Where to use & benefits
- Control states without many if-else statements
- Represent states using classes
- Every state has to act in a similar manner
- Simplify and clarify the program
- Example
- States representing finite state machine (FSM)
- Original
- Each method chooses action depending on state
- Behavior may be confusing, state is implicit
- Using pattern
- State interface defines list of actions for state
- Define inner classes implementing State interface
- Finite state machine instantiates each state and tracks its current state
« Current state used to choose action
- Example: StateCode

© Department of Computer Science UMD

State Example — Original Code

public class FickleFruitVendor {
boolean wearingHat;
boolean isHatOnN() { return wearingHat; }
String requestFruit() {
If (wearingHat) {
wearingHat = false;
return "Banana';

} else { Apple
wearingHat = true; : ¥ S Not
return "Apple"; Wel_zlslr![ng Wearing
} a Hat
} Banana

}

© Department of Computer Science UMD

State Example

public interface State { /Il Inner class
boolean isHatOnN(); public class WearingHat implements State {
String requestFruit(); boolean isHatON() { return true; }
} String requestFruit() {
Il change state _
public class FickleFruitVendor { ?gtﬁsr?g%tgrtlgr;angtWear|ngHat,
State wearingHat = new WearingHat(); }
State notWearingHat = new }
NotWearingHat();

/I 'Inner class
public class NotWearingHat implements State {

Il track current state of Vendor boolean isHatOn() { return false; }

State currentState = wearingHat; String requestFruit() {
/[change state

/I behavior depends on current state currentState = wearingHat;
public boolean isHatOnN() {) return "Apple”;

return currentState.isHatOn();
} } // End of FickleFruitVendor class
public String requestFruit() {

return currentState.requestFruit(); Apple
} o\ ~/ Not

Wel_?erlltng Wearing

Hat

Banana

© Department of Computer Science UMD

Dynamic Systems

- Dynamic Systems: Systems that change dynamically over time. Such
systems arise naturally when writing programs involving graphical user
interfaces (video games, interactive graphics). Some issues:

- How does the system respond to external events or stimuli? Called
reactive or event-driven systems.

- State transition: Most dynamic systems are defined in terms of
information called its state.

- What are the possible states the system can be in?

- What sorts of state transitions are possible, and under what
circumstances do transitions occur?

- What actions are performed in each state?

© Department of Computer Science UMD

Dynamic Systems

- Examples:

DVD Player/Recorder: Behavior to remote control commands varies
depending on the operating state: recording, playback, idle.

Figure drawing program: (e.g. Paint) The meaning of mouse actions
depends on the drawing state: line, curve, ellipse, rectangle, polygon.

#o, > |
drag’, l rectangle mode ‘elllpse mode

A

Video game: The meaning of user inputs depends on the current context in
which the game is operating.

Digital watch: Has various modes (clock, stop watch, timer) and the
meaning of buttons varies with the mode.

- How do we design programs for such event-driven systems?

© Department of Computer Science UMD

State Transition Systems

- These systems have a number of elements in common:

Events: Inputs/Stimuli come in the form of events (rather than traditional text
prompt + text input).

State: The behavior depends on internal information (which the user
cannot see) called the system’s state or context.

Transitions: Events can cause changes in the context and other state
information.

Actions: Actions (which the user may or may not see) are performed in
response to each event/transition.

(Spontaneous actions): Some actions take place without any user input.
(Example: animation in a video game.) These can be modeled as
responses to system-generated events, like timer events.

© Department of Computer Science UMD

Calculator

- Let us consider the case of a simple interactive calculator.
Events: occur when user hits the keys.

State: Operands, memory, internal state of
the computation (more about this later).

Actions: Perform calculations, update the display.
- What internal state information is needed?
- Example:*3 4 + 56 ="

When the “=" is processed, the calculator
has saved the following information internally:

First operand: “34” (call this v1)
Operator: “+” (call this op)
Second operand: “56” (call this v2)
- It must also know which operand it is reading, first or second.

© Department of Computer Science UMD

Calculator

- Calculator: Has three states, or contexts:
Reading-First-Operand (RFO): reading digits for the first operand.
Reading-Second-Operand (RSO): reading digits for the second operand.
Error (ERR): An error occurs (e.g., invalid operand or divide by 0).

- Example:

Input: Context: Action: Display:

(init) RFO reset (vl) 0
3 RFO vl += "3" 3
4 RFO vl += "4" 34

+/- RFO vl < procUnary: "34", "+/-" -34
+ RSO op <« "+"; reset(v2) -34
5 RSO v2 += "5H" 5
6 RSO v2 += "6" 56
* RSO vl < procBinary: "-34", "+", "56" 22

reset (v2)

2 RSO v2 += "2" 2

1/x RSO v2 <« procUnary: "2", "1/x" 0.5

= RFO vl < procBinary: "22", "x" 1"Q. 5" 11

© Department of Computer Science UMD

State-Transition Diagram

- How does the calculator know what operation to perform with each event?
This is based on its state, or context (RFO, RSO, ERR).

- We can describe the behavior using a state-transition diagram.

- Nodes: represent possible states the system can be in. A black circle is
the initial or starting state.

- Arcs or Edges: represent possible transitions. Each is labeled with a pair
“‘Event/Action” where:

- Event: event that triggers the transition.
- Action: action/computation performed as a result of the event.

Event / {Action}

® > STATE NAME > NEW STATE
Initial state

© Department of Computer Science UMD

(Simplified) State-Transition Diagram

Digit(x) / {v1 += x} Digit(x) / {v2 += x}

BinaryOp(x) /
v BinaryOp(x) / y {v1 < vlopv2;
{reset(v1)} {op < x; reset(v2)} op < x; reset(v2)}

RFO RSO

—
-

Initial state Assign /
4 {vl < vl op v2} A

UnaryOp(x) / { vl « x v1} UnaryOp(x) / { v2 < x v2}

-l
-

Clear: {reset(vl)}

If there is no transition
(AnyError) / { } for a particular event from

(from any state) > ERR some state, then the event
is ignored.

To keep the diagram simple, these
two transitions are the same for
all states.

© Department of Computer Science UMD

Programming State-Transition Diagrams

- You can use if-the-else and/or switch statements to control the processing.
- Example:
if (event==X){ //some event X encountered
switch (state) {
case STATEL:
I/l processing for event X in state 1
break;
case STATEZ2:
I/l processing for event X in state 2
break;
}
} elseif (event==Y){ /[event Y encountered
/l same thing
} Il etc...
- You can use the state design pattern

