
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Singleton and Decorator Design Patterns

Department of Computer Science

University of Maryland, College Park

Singleton Pattern
• Typical problem: only one instance of a class is allowed/needed

• Definition

• One instance of a class or a value accessible globally

• In some scenarios only one instance of a class is allowed as more

than one instance will be incorrect. For example, you can only have

one database manager (several will create data inconsistencies, only

one president, etc.)

• How to define a class as a singleton

• Define the class constructor private to control creation of instances

• Only instance created by static method or when class is loaded

• Access to single instance only via specific methods (e.g., static

method that returns reference to single object reference)

• Define class as final

© Department of Computer Science UMD

Singleton Pattern
• Examples:

public class Employee {
public static final int ID = 1234; // ID is a singleton

}

public final class MySingleton {

// Declares the unique instance of the class created when class is loaded
private static MySingleton uniq = new MySingleton();

// private constructor only accessed from this class
private MySingleton() { … }

// Returns reference to unique instance of class
public static MySingleton getInstance() {

return uniq;
}

}

• Example: DatabaseManager.java

• How can you modify the singleton design patterns so you only allow only a particular
number of objects to be created?

© Department of Computer Science UMD

Decorator Pattern
• Typical problem: customization

• A Pizza can have different toppings; defining a class for each

possible topping’s combination could lead to a large number of

subclasses

• A car in a dealership can have different options (e.g., customized

radio, wheels, guarantees, etc.) you can add before buying

• Definition

• Attach additional responsibilities or functions to an object

dynamically or statically

• Where to use & benefits

• Provide flexible alternative to subclassing

• Add new function to an object without affecting other objects

• Make responsibilities easily added and removed dynamically &

transparently to the object

© Department of Computer Science UMD

Decorator Pattern
• Example

• Pizza decorator adds toppings to Pizza

• Original

• Pizza subclasses

• Combinatorial explosion in # of subclasses

• Using pattern

• Pizza decorator classes add toppings to Pizza objects dynamically

• Can create different combinations of toppings without modifying Pizza

class

• Example: PizzaDecoratorCode

© Department of Computer Science UMD

Decorator Pattern
• Examples from Java I/O

• Interface

• InputStream

• Concrete subclasses

• FileInputStream, ByteArrayInputStream

• Decorators

• BufferedInputStream, DataInputStream

• Code

• InputStream s = new DataInputStream(new BufferedInputStream

(new FileInputStream()));

© Department of Computer Science UMD

