
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Hashing

Department of Computer Science

University of Maryland, College Park

Announcements
• Video “What most schools don’t teach”

• http://www.youtube.com/watch?v=nKIu9yen5nc

© Department of Computer Science UMD

http://www.youtube.com/watch?v=nKIu9yen5nc

Introduction
• If you need to find a value in a list what is the most efficient way to

perform the search?

• Linear search

• Binary search

• Can we have O(1)?

© Department of Computer Science UMD

Hashing
• Remember that modulus allows us to map a number to a range

• X % N → X mapped to value between 0 and N - 1

• Suppose you have 4 parking spaces and need to assign each

resident a space. How can we do it?

parkingSpace(ssn) = ssn % 4

• Problems??

• What if two residents are assigned the same spot? Collission!

• What if we want to use name instead of ssn?

• Generate integer out of the name

• We just described hashing

© Department of Computer Science UMD

Hashing
• Hashing

• Technique for storing key-value entries into an array

• In Java we will have an array of Objects where each Object has a key
(e.g., student’s name) and a reference to data of interest (e.g., student’s
grades)

• The array is called the hash table

• Ideally can result in O(1) search times

• Hash Function

• Takes a search key (Ki) and returns a location in the array (an integer index
(hash index))

• A search key maps (hashes) to index i

• Ideal Hash Function

• If every search key corresponds to a unique element in the hash table

© Department of Computer Science UMD

Hashing
• If we have a large range of possible search keys, but a subset of them are

used, allocating a large table would a waste of significant space

• Typical hash function (two steps)

1. Transforms a search key to an integer value called the hash code. For
example, for a string we can add Unicode values to generate a hash
code

2. Compress the hash code so it lies within the range of indices for the
hash table. Using the modulus operator (%) we can compress the
hash code in order to generate the hash index (location in the table)

• Collision

• Takes place when two or more search keys map to the hash table entry

• Good Hash Function

• Fast to compute

• Minimizes Collisions

• Using a function that distributes values uniformly reduces probability
of collisions

© Department of Computer Science UMD

Hash Codes
• You can generate a hash code for a string

• By adding Unicode values

• Better approach - Multiplying Unicode value of each character by a factor

that depends on the character’s position in the string

• For primitive types

• If the key is an int, use the key

• If char, short, byte, cast to int

• If long, float, double manipulate the internal binary representation

• Example:

System.out.println("Java".hashCode()); // prints 2301506

How did they get this?

Ascii for J is 74, a is 97, and v is 118

74 *(31)^3 + 97 *(31)^2 + 118 * 31 + 97 = 2301506

© Department of Computer Science UMD

Scaling (Compressing) hash code
• Using the modulus operator, we can compress an integer to lie within a

given range of values. If n is the table size

remainder (hash index/compressed hash code) = hash code % n

remainder lies in the range [0, n – 1]

• Selecting table size (n)

• If n is even, the compressed hash code will have the same parity as

the hash code (if hash code is odd, result is odd; if even, even)

• Many indices of the table will be left out if n is even

• Size of the hash table should be odd

• When n is a prime number, hash code % n provides values that are

distributed throughout the range [0, n – 1]

• Size of a hash table should be a prime number n greater than 2

© Department of Computer Science UMD

Hash Function
• Example (generating hash indices)

hash("apple") = 5

hash("watermelon") = 3

hash("kiwi") = 0

hash("mango") = 6

hash("banana") = 2

• Perfect hash function

• Unique values for each key

kiwi

banana

watermelon

apple

mango

0

1

2

3

4

5

6

7

© Department of Computer Science UMD

Hash Function
• Suppose now

hash("apple") = 5

hash("watermelon") = 3

hash("kiwi") = 0

hash("mango") = 6

hash("banana") = 2

hash(“orange") = 3

• Collision

• Same hash index for multiple keys

kiwi

banana

watermelon

apple

mango

0

1

2

3

4

5

6

7

© Department of Computer Science UMD

Resolving Collisions
• Choice #1

• Look for an unused entry in the table

• This technique is referred to as open addressing

• Choice #2

• Each element in the table can be associated with more than one

search key

• Each element now becomes a bucket (e.g., a list)

• This technique is referred to as separate chaining

© Department of Computer Science UMD

Resolving Collisions (Open Addressing)
• Probing → locating an open element/position in the hash table

• Open addressing has several variations depending on the next position

(increment) to use to resolve the collision

• Linear probing →When a collision occurs at index position k, we see

whether position k + 1 is available (not in use). If it is in use, we look at

k + 2 and so on, wrapping around to the beginning of the table if

necessary

• Probe sequence → table elements considered in a search

• Quadratic probing → Considers elements at indices k + j2 (e.g., k + 1,

k + 4, k + 9, etc.) wrapping around if necessary

• Double Hashing →The increment of 1 for linear probing and j2 for

quadratic, is replaced with the result of a second hash function that

determines the increment

© Department of Computer Science UMD

Open Addressing Summary
• Search → searches the probe sequence for the key, examining elements

that are present and ignoring Removed entries. Search stops when

element is found or NeverUsed is reached

• Remove → performs a search and if it finds the key it marks the element

as Removed

• Insertion → searches the probe sequence, keeping track of the first

element that is in the Removed or NeverUsed state. If the key is not

found, it is placed in the first element that was in the Removed or

NeverUsed state

© Department of Computer Science UMD

Insertion: Open Addressing (Linear Probing)
• Table states: Occupied, NeverUsed, Removed

• Suppose now

hash("apple") = 5
hash("watermelon") = 3
hash("kiwi") = 0
hash("mango") = 6
hash("banana") = 2

hash(“orange") = 3

hash(“pear") = 3
• Insertion of orange and pear

• Same hash index for multiple keys (orange and
pear)

• Using linear probing we find next available
position and insert element

• Searching after insertion (watermelon, orange
and pear)

• Hash search key. If element found at hash index,
stop; otherwise, search forward until element
found or NeverUsed seen (element not found)

kiwi

banana

watermelon

apple

mango

0

1

2

3

4

5

6

7

© Department of Computer Science UMD

NeverUsed orange

NeverUsed

NeverUsed pear

Removal: Open Addressing (Linear Probing)
• Suppose now

hash("apple") = 5

hash("watermelon") = 3

hash("kiwi") = 0

hash("mango") = 6

hash("banana") = 2

hash(“orange") = 3

hash(“pear") = 3

• Deleting orange (incorrect, using NeverUsed)

• Assume we delete orange by replacing the entry

with NeverUsed. This will not allow us to find pear

as we will stop searching when we find NeverUsed

• We need three states for a table entry

• Occupied, NeverUsed, Removed

• Removing an element will change the element to

Removed rather than NeverUsed

kiwi

banana

watermelon

apple

mango

0

1

2

3

4

5

6

7

© Department of Computer Science UMD

orange

pear

NeverUsed

NeverUsed

Removal: Open Addressing (Linear Probing)
• Suppose now

hash("apple") = 5

hash("watermelon") = 3

hash("kiwi") = 0

hash("mango") = 6

hash("banana") = 2

hash(“orange") = 3

hash(“pear") = 3

• Deleting orange (correct, using Removed)

• Deleting orange by replacing the entry with

Removed

• When we search, we do not stop when we find

Removed; only when we find NeverUsed

• Now we can find pear after removing orange

kiwi

banana

watermelon

apple

mango

0

1

2

3

4

5

6

7

© Department of Computer Science UMD

orange

pear

Removed

NeverUsed

Insertion: Revisited
• Suppose now

hash("apple") = 5
hash("watermelon") = 3
hash("kiwi") = 0
hash("mango") = 6
hash("banana") = 2

hash(“orange") = 3

hash(“pear") = 3

hash(“grape") = 2

• Inserting grape

• To insert grape we first need to determine whether it
is in the table (we search until we find it or find
NeverUsed). In this traversal we make a note about
the first Removed (4) and NeverUsed (1) found

• To complete the insertion, we should use the first
Remove found instead of NeverUsed. Using
NeverUsed will lead to longer search times for
grape. Also using NeverUsed would fill the hash
table faster (something we want to avoid)

kiwi

banana

watermelon

apple

mango

0

1

2

3

4

5

6

7

© Department of Computer Science UMD

pear

Removed

NeverUsed

grape

Clustering
• Collisions resolved with linear probing generate groups of consecutive

elements in the hash table. Each group is called a cluster and the

phenomenon is known as primary clustering

• Each cluster is a probe sequence you must search when adding,

removing, retrieving

• Bigger clusters mean longer search times

• Linear probing can cause primary clustering

• Quadratic probing avoids primary clustering, but can lead to secondary

clustering

© Department of Computer Science UMD

Separate Chaining
• Separate Chaining - Second approach to resolve collisions where each

element of the table represents more than one value. Each element is

called a bucket

• Elements that hash to the same entry are stored in the same bucket

• Bucket – Can be represented with a list, sorted list, linked nodes, etc.

• Operations

• Search – Determine the bucket by hashing the search key; look through

the list to find the element or determine it does not exist

• Insert – Look for the item; insert it in the found bucket if not found

• Remove – Look for the item and remove it from the bucket

• You can add entries to a bucket in sorted search-key order, although it is

usually unnecessary as typical buckets are short

• You can add entries at the beginning of the bucket if duplicates are allowed

or at the end if not

© Department of Computer Science UMD

Load Factor
• Load Factor (λ) - measure of the cost of collision resolution

Number of entries in the hash table

λ = ---

Size of the table

• For Open Addressing – λ does not exceed 1

• For Separate Chaining – λ has no maximum value

• As λ increases, number of comparisons increases

• Performance of linear probing degrades as the load factor increases

• To main reasonable efficiency, keep λ < 0.5 (i.e., hash table should be
less than half full)

• For reasonable efficiency of separate chaining keep λ < 1

• Rehashing - When the load factor becomes large, resize the hash
table and compute a new hash index for each key

© Department of Computer Science UMD

Hashing in Java
• hashCode() method

• Returns hash code (not hash index)

• Part of the Object class

• Provides hashing support by returning a hash code for any object

• 32-bit signed int – Can be a negative value!

• Default hashCode() implementation

• Usually just address of object in memory

• How hashCode() could be used:

int getHashIndex(K key) {

int hashIndex = key.hashCode() % hashTableLength;

return Math.abs(hashIndex);

}

© Department of Computer Science UMD

Java Hash Code Contract
• If you override equals you need to make sure the “Java Hash Code

Contract” is satisfied

• Java Hash Code Contract

if a.equals(b) == true, then we must guarantee

a.hashCode() == b.hashCode()

• Inverse is not true

!a.equals(b) does not imply a.hashCode() != b.hashCode()

(Though Java libraries may be more efficient)

• Converse is also not true

a.hashCode() == b.hashCode() does not imply a.equals(b) == true

• hashCode()

• Must return same value for object in each execution, provided information

used in equals() comparisons on the object is not modified

• Easiest (and worst) hashCode implementation – return a constant (e.g., 10,

20, etc)

© Department of Computer Science UMD

When to Override hashCode
• You must write classes that satisfy the Java Hash Code Contract

• You will run into problems if you don’t satisfy the Java Hash Code Contract
and use classes that rely on hashing (e.g., HashMap)

• Possible problem

• You add an element to a set but cannot find it during a lookup

• Example: See code distribution

• Does the default equals and hashCode satisfy the contract? Yes!

• If you implement the Comparable interface, you should provide the
appropriate equals method which leads to the appropriate hashCode
method

• Implementing hashCode()

• IMPORTANT: include only information used by equals()

• Otherwise two “equal” objects → different hash values

• Using all/more of information used by equals()

• Helps avoid same hash value for unequal objects

© Department of Computer Science UMD

Beware of % (Modulo Operator)
• The % operator is integer remainder

x % y == x – y * (x / y)

• Result may be negative

–|y| < x % y < +|y|

• x % y has same sign as x

• -3 % 2 = -1

• -3 % -2 = -1

• About absolute value in Java

• Math.abs(Integer.MIN_VALUE) == Integer.MIN_VALUE !

• Absolute value is a negative value

• Will happen 1 in 232 times (on average) for random int values

• Example: Absolute.java

• You must use Math.abs(x % N) and not Math.abs(x) % N, otherwise you
will get a negative hash index. By doing % first, you get a value larger than
Integer.MIN_VALUE. This will avoid computing the absolute value of
Integer.MIN_VALUE which generates a negative value

© Department of Computer Science UMD

Art and Magic of hashCode()
• There is no “right” hashCode function

• Art involved in finding good hashCode function

• Also for finding hashCode to hashBucket function (hashBucket

returns a hash index)

• From java.util.HashMap

static int hashBucket(Object x, int N) {

int h = x.hashCode();

h += ~(h << 9);

h ^= (h >>> 14);

h += (h << 4);

h ^= (h >>> 10);

return Math.abs(h % N);

}

© Department of Computer Science UMD

References
Data Structures & Abstractions with Java, 5th Edition

ISBN – 9780134831695

© Department of Computer Science UMD

