
CMSC 132: 

OBJECT-ORIENTED PROGRAMMING II

Sets and Maps

Department of Computer Science

University of Maryland, College Park



Sets
• Properties

• Collection of elements without 

duplicates

• No ordering (i.e., no front or 

back)

• Order in which elements added 

doesn’t matter

• Implementation goal

• Offer the ability to find / remove 

element quickly

• Without searching through all 

elements

Set B

Set C

Set A

© Department of Computer Science UMD



Map Definition
• Map (associative array)

• Unordered collection of keys

• For each key, an associated object

• Can use key to retrieve object

• Can view as array indexed by any (key) value

• Example

A[“key1”] = … key1

key2

key3

key4

© Department of Computer Science UMD



Collection & Map Hierarchies

Interface (red)

Class (black)

© Department of Computer Science UMD

In Java a map is not a Java Collection (e.g., TreeMap does not implement Iterable)



How Do Sets Work in Java?
• Finding matching element is based on equals( )

• To build a collection for a class

• Need to define your own equals(Object) method and you need 

to make sure the Java Hash Code Contract is satisfied

• Default equals( ) uses reference comparison 

• I.e., a.equals(b) → a == b

• a, b equal only if reference to same object

• Many classes have predefined equals( ) methods

• Integer.equals( ) → compares value of integer

• String.equals( ) → compares text of string

© Department of Computer Science UMD



Set Concrete Classes
• HashSet

• Elements must satisfy the Java Hash Code Contract

• LinkedHashSet

• HashSet supporting ordering of elements

• Elements can be retrieved in order of insertion

• TreeSet

• Elements must be comparable

• Implement Comparable or provide Comparator

• Guarantees elements in set are sorted

• You can create one type of set of out of another type

• For example, a sorted set out of a HashSet

• After processing data efficiently (hashSet) you would like to print 

values in sorted order

• Example: SetsMapsCode

© Department of Computer Science UMD



Map Interface Methods
• Methods

• void put(K key, V value) // inserts element

• V get(Object key) // returns element

• V remove(Object key) // removes element

• int size() // key-value mappings

• void clear() // clears the map

• boolean containsKey(Object key) // looks for key

• boolean containsValue(Object value) // looks for value

• boolean isEmpty() // empty map?

• Set<K> keySet( ) // entire set of keys

• Collection<V> values() // values in the map

• Set<Map.Entry<K,V>> entrySet() // set view of the mapping

• Map.Entry<K,V> is a nested class

© Department of Computer Science UMD



Map Concrete Classes
• HashMap

• Elements must implement Java Hash Code Contract

• LinkedHashMap

• HashMap supporting ordering of elements

• Elements can be retrieved in order of insertion

• TreeMap

• Elements must be comparable

• Implement Comparable or provide Comparator

• Elements can be retrieved in sorted order

• Example: SetsMapsCode

• Every class provides a constructor that allows you to create a Map 

out of another kind of map:

• Example: new TreeMap(hashMap)

© Department of Computer Science UMD



Map Properties
• Map keys & map objects

• Can also treat keys & values as collections

• Access using keySet( ), values( )

• Aliasing

• Each key refers only a single object

• But object may be referred to by multiple keys

• Keys & values may be of complex type

• Map<Object Type1, Any Object Type2>

• Including other collections, maps, etc…

© Department of Computer Science UMD



Map Implementation
• Implementation approaches

• Two parallel arrays

• Unsorted

• Sorted

• Linked list

• Binary search tree

• Hash table

• Java Collections Framework 

• TreeMap → uses red-black (balanced) tree

• HashMap → uses hash table

© Department of Computer Science UMD


