
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity II

Department of Computer Science

University of Maryland, College Park

Analyzing Algorithms
• Goal

• Find asymptotic complexity of algorithm

• Approach

• Ignore less frequently executed parts of algorithm

• Find critical section of algorithm

• Determine how many times critical section is executed as function of

problem size

© Department of Computer Science UMD

Critical Section of Algorithm
• Heart of algorithm

• Dominates overall execution time

• Characteristics

• Operation central to functioning of program

• Usually contained inside deeply nested loops

• Sources

• Loops

• Recursion

© Department of Computer Science UMD

Computing Number of Iterations
• In the slides that follow we often need to compute how many times a

loop is executed. Keep the following in mind:

• for (int i = 1; i <= n; i++) { body }

• Number of times body is executed: n - 1 + 1 → n

• for (int i = 3; i <= n; i++) { body }

• Number of times body is executed: n - 3 + 1 → n - 2

• for (int i = 3; i < n; i++) { body } // condition is < not <=

• Previous loop equivalent to

• for (int i = 3; i <= n - 1; i++) { body }

• Number of times body is executed: n - 1 - 3 + 1 → n – 3

• for (int i = 0; i < n; i++) { body } // condition is < not <=

• Number of times body is executed: n - 1 - 0 + 1 → n

© Department of Computer Science UMD

Critical Section Example 1
• Suppose A, B, C are operations that do not involve loops (or recursive calls)

• Code (for input size n)

A

for (int i = 0; i < n; i++) {

B

}

C

• Code execution

• A once

• B n times

• C once

• T(n) 1 + n + 1 = O(n)

critical

section

© Department of Computer Science UMD

Critical Section Example 2
• Code (for input size n)

A

for (int i = 0; i < n; i++) {

B

for (int j = 0; j < n; j++) {

C

}

}

D

• Code execution

• A once

• B n times

• C n2 times

• D once

• T(n) 1 + n + n2 + 1 = O(n2)

critical

section

© Department of Computer Science UMD

Critical Section Example 3
• Code (for input size n)

A

for (int i = 0; i < n; i++) {

for (int j = i + 1; j < n; j++) {

B

}

}

• Code execution

• A once

• B (n-1)+(n-2)+(n-3)+….+ 3+2+1+0 = ½ n(n-1) times

• T(n) 1 + ½ n2 – ½ n = O(n2)

critical

section

© Department of Computer Science UMD

Critical Section Example 4
• Code (for input size n)

A

for (int i = 0; i < n; i++) {

for (int j = 0; j < 10000; j++) {

B

}

}

• Code execution

• A once

• B 10000n times

• T(n) 1 + 10000n = O(n)

• Just because we have nested loops we don’t necessarily have O(n2)

critical

section

© Department of Computer Science UMD

Critical Section Example 5
• Code (for input size n)

for (int i = 0; i < n/2; i++)

for (int j = 0; j < n/2; j++)

A

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

B

• Code execution

• A n2/4 times

• B n2 times

• T(n) n2/4 + n2 = O(n2)

• You can have more than one critical section

critical

sections

© Department of Computer Science UMD

Critical Section Example 6
• Code (for input size n)

i = 1

while (i < n) {

A

i = 2 i

}

B

• Code execution

• i = 1 1 time

• A log(n) times

• i = 2 x i log(n) times

• B 1 time

• T(n) 1 + log(n) + log(n) + 1 = O(log(n))

• Use a trace table to analyze the number of times body is executed

critical

section

© Department of Computer Science UMD

Asymptotic Complexity of Recursive Algorithms
• How can we compute the complexity of recursive algorithms?

• By using a recurrence relation

• Example: T(n) = 2 T(n/2) + O(n), T(1) = O(1)

• In a recurrence relation T(..) appears on both sides of the = sign

• By solving the recurrence relation, we can determine the algorithmic complexity of

the algorithm described by the relation

• When you write a recurrence relation you write two equations:

• One for the base case

• One for the general case

• About the base case equation

• Often an O(1) operation

• Base case involves input of size one, so T(1) = O(1)

• You can also have base case of size zero, so T(0) = O(1)

• Solving the recurrence relation

• You can use induction

• We can solve it following a non-formal approach where you identify a pattern

• Reference: https://users.cs.duke.edu/~ola/ap/recurrence.html

© Department of Computer Science UMD

https://users.cs.duke.edu/~ola/ap/recurrence.html

Example: Mergesort
• Recursively sort the first half

• Recursively sort the second half

• Merge the two halves to get the array sorted

© Department of Computer Science UMD

Recursion : Mergesort
• MergeSort

Mergesort(Array of size n) {

if (n == 1) {

return;

} else {

Mergesort(First n/2 elements in the array)

Mergesort(Last n/2 elements in the array)

Merge the two halves

}

}

• Base case: T(1) = 1

• General case (recurrence relation): T(n) = 2 T(n/2) + n

n operations

© Department of Computer Science UMD

Solving Recurrence Relation (Mergesort)
• Base case: T(1) = 1

• General case (recurrence relation): T(n) = 2 T(n/2) + n

• Solving recurrence relation

• T(n) = 2 T(n/2) + n

= 2 (2 T(n/4) + n/2) + n

= 4 T(n/4) + 2n

= 4 (2 T(n/8) + n/4) + 2n

= 8 T(n/8) + 3n

= 16 T(n/16) + 4n

… at this point you can see a pattern …

= 2kT(n/2k) + kn

• T(1) = 1 will allow us to end the derivation above. What is the value of k for n/2k be
equal to 1?

n/2k = 1 → k = log2n

• Replacing k with log2n

• T(n) = 2kT(n/2k) + kn

= 2log
2
n T(1) + (log2n) n

T(n) = n + n log2n

= O(nlog(n))

© Department of Computer Science UMD

Recurrence Relations
Recurrence Relations

Algorithm Recurrence Relation Big-O

Sequential Search T(n) = T(n-1) + O(1) O(n)

Binary Search T(n) = T(n/2) + O(1) O(log n)

Tree Traversal 2 T(n/2) + O(1) O(n)

Mergesort T(n) = 2 T(n/2) + O(n) O(nlog(n))

© Department of Computer Science UMD

Comparing Complexity
• Compare two algorithms

• f(n), g(n)

• Determine which increases at faster rate

• As problem size n increases

• Can compare ratio

• If , f() is larger

• If 0, g() is larger

• If constant, same complexity

• Example (log(n) vs. n½)

lim

n→

f(n)

g(n)

lim

n→

f(n)

g(n)

lim

n→

log(n)

n½
0

© Department of Computer Science UMD

Additional Complexity Measures
• Upper bound

• Big-O (…)

• Represents upper bound on # steps

• Lower bound

• Big-Omega (…)

• Represents lower bound on # steps

© Department of Computer Science UMD

2D Matrix Multiplication Example
• Problem

• C = A * B

• Lower bound (best case)

• (n2) Required to examine 2D matrix

• Upper bounds

• O(n3) Basic algorithm

• O(n2.807) Strassen’s algorithm (1969)

• O(n2.376) Coppersmith & Winograd (1987)

• Improvements still possible (open problem)

• Since upper & lower bounds do not match

© Department of Computer Science UMD

Resources
• http://bigocheatsheet.com/

© Department of Computer Science UMD

http://bigocheatsheet.com/

