CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity II

Department of Computer Science University of Maryland, College Park

Analyzing Algorithms

- Goal
 - Find asymptotic complexity of algorithm
- Approach
 - Ignore less frequently executed parts of algorithm
 - Find critical section of algorithm
 - Determine how many times critical section is executed as function of problem size

Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time
- Characteristics
 - Operation central to functioning of program
 - Usually contained inside deeply nested loops
- Sources
 - Loops
 - Recursion

Computing Number of Iterations

- In the slides that follow we often need to compute how many times a loop is executed. Keep the following in mind:
- for (int i = 1; i <= n; i++) { body }</pre>
 - Number of times body is executed: n 1 + 1 \rightarrow n
- for (int i = 3; i <= n; i++) { body }</pre>
 - Number of times body is executed: n 3 + 1 \rightarrow n 2
- for (int i = 3; i < n; i++) { body } // condition is < not <=</p>
- Previous loop equivalent to
 - for (int i = 3; i <= n 1; i++) { body }</pre>
 - Number of times body is executed: n 1 3 + 1 \rightarrow n 3
- for (int i = 0; i < n; i++) { body } // condition is < not <=</pre>
 - Number of times body is executed: n 1 0 + 1 \rightarrow n

- Suppose A, B, C are operations that do not involve loops (or recursive calls)
- Code (for input size n)

- Code execution
 - $A \Rightarrow \text{once}$
 - $B \Rightarrow n$ times
 - $C \Rightarrow$ once

• $T(n) \Rightarrow 1 + n + 1 = O(n)$

• $T(n) \Rightarrow 1 + n + n^2 + 1 = O(n^2)$

•
$$T(n) \Rightarrow 1 + \frac{1}{2} \frac{n^2}{n^2} - \frac{1}{2} \frac{n}{n} = O(n^2)$$

Code (for input size n)

```
A
for (int i = 0; i < n; i++) {
    for (int j = 0; j < 10000; j++) {
        B
        }
} critical
    section
```

- Code execution
 - $A \Rightarrow \text{once}$
 - $B \Rightarrow 10000$ n times
- $T(n) \Rightarrow 1 + 10000n = O(n)$
- Just because we have nested loops we don't necessarily have O(n²)

Code (for input size n)

- Code execution
 - $A \Rightarrow n^2/4$ times
 - $B \Rightarrow n^2$ times
- $T(n) \Rightarrow \frac{n^2}{4} + \frac{n^2}{2} = O(\frac{n^2}{2})$
- You can have more than one critical section

Code (for input size n)

- Code execution
 - i = 1 ⇒ 1 time
 - $A \Rightarrow \log(n)$ times
 - $i = 2 \times i \Rightarrow log(n)$ times
 - $B \Rightarrow 1$ time
- $T(n) \Rightarrow 1 + \log(n) + \log(n) + 1 = O(\log(n))$
- Use a trace table to analyze the number of times body is executed

Asymptotic Complexity of Recursive Algorithms

- How can we compute the complexity of recursive algorithms?
 - By using a recurrence relation
 - Example: T(n) = 2 T(n/2) + O(n), T(1) = O(1)
- In a recurrence relation T(..) appears on both sides of the = sign
- By solving the recurrence relation, we can determine the algorithmic complexity of the algorithm described by the relation
- When you write a recurrence relation you write two equations:
 - One for the base case
 - One for the general case
- About the base case equation
 - Often an O(1) operation
 - Base case involves input of size one, so T(1) = O(1)
 - You can also have base case of size zero, so T(0) = O(1)
- Solving the recurrence relation
 - You can use induction
 - We can solve it following a non-formal approach where you identify a pattern
- Reference: <u>https://users.cs.duke.edu/~ola/ap/recurrence.html</u>

Example: Mergesort

- Recursively sort the first half
- Recursively sort the second half
- Merge the two halves to get the array sorted

input	Μ	Е	R	G	Е	S	0	R	Т	Е	Х	Α	Μ	Ρ	L	Е
sort left half	Е	Е	G	Μ	0	R	R	S	Т	Е	Х	Α	М	Ρ	L	Ε
sort right half	Е	Е	G	М	0	R	R	S	Α	Е	Е	L	Μ	Ρ	Т	Х
merge results	Α	Е	Е	Е	Е	G	L	Μ	Μ	0	Ρ	R	R	S	Т	Х

Mergesort overview

Recursion : Mergesort

MergeSort

- Base case: T(1) = 1
- General case (recurrence relation): T(n) = 2 T(n/2) + n

Solving Recurrence Relation (Mergesort)

- **Base case:** T(1) = 1
- General case (recurrence relation): T(n) = 2 T(n/2) + n
- Solving recurrence relation
 - T(n) = 2 T(n/2) + n

$$= 2 (2 T(n/4) + n/2) + n$$

- = 4 T(n/4) + 2n
- = 4 (2 T(n/8) + n/4) + 2n
- = 8 T(n/8) + 3n
- = 16 T(n/16) + 4n
- ... at this point you can see a pattern ...
- $= 2^{k}T(n/2^{k}) + kn$
- T(1) = 1 will allow us to end the derivation above. What is the value of k for n/2^k be equal to 1?

 $n/2^{k} = 1 \rightarrow k = log_{2}n$

- Replacing k with log₂n
- $T(n) = 2^{k}T(n/2^{k}) + kn$ = $2^{\log_{2}n}T(1) + (\log_{2}n) n$

 $T(n) = n + n \log_2 n$ = O(nlog(n))

Recurrence Relations

Recurrence Relations

Algorithm	Recurrence Relation	Big-O
Sequential Search	T(n) = T(n-1) + O(1)	O(n)
Binary Search	T(n) = T(n/2) + O(1)	O(log n)
Tree Traversal	2 T(n/2) + O(1)	O(n)
Mergesort	T(n) = 2 T(n/2) + O(n)	O(nlog(n))

Comparing Complexity

- Compare two algorithms
 - f(n), g(n)
- Determine which increases at faster rate
 - As problem size n increases
- Can compare ratio
 - If ∞ , f() is larger
 - If 0, g() is larger

- If constant, same complexity
- Example (log(n) vs. n¹/₂)

Additional Complexity Measures

- Upper bound
 - Big-O \Rightarrow O(...)
 - Represents upper bound on # steps

- Lower bound
 - Big-Omega $\Rightarrow \Omega(...)$
 - Represents lower bound on # steps

2D Matrix Multiplication Example

- Problem
 - C = A * B
- Lower bound (best case)
 - Ω(n²) Required to examine 2D matrix
- Upper bounds
 - O(n³) Basic algorithm
 - O(n^{2.807}) Strassen's algorithm (1969)
 - O(n^{2.376})
 Coppersmith & Winograd (1987)
- Improvements still possible (open problem)
 - Since upper & lower bounds do not match

<u>Resources</u>

http://bigocheatsheet.com/