CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Trees & Binary Search Trees

Department of Computer Science University of Maryland, College Park

- Trees are hierarchical data structures
 - One-to-many relationship between elements
- Tree node / element
 - Contains data
 - Referred to by only 1 (parent) node
 - Contains links to any number of (children) nodes

Children nodes

Parent node

Terminology

- Root ⇒ node with no parent
- Leaf \Rightarrow all nodes with no children
- Interior \Rightarrow all nodes with children

Terminology

- Sibling \Rightarrow node with same parent
- Subtree \Rightarrow portion of tree that is a tree by itself

 \Rightarrow a node and its descendants

- **Depth** \rightarrow Distance from the node to the root of the tree
 - Depth of the root is 0
 - Depth of a node is 1 + depth of its parent
- Level
 - The level of a node is its depth (e.g., level of root node is 0)
 - All the nodes of a tree with the same depth
- Height → Number of edges on the longest downward path from the root to a leaf node
 - A tree with one node has a height of 0

Binary Trees

- Binary tree
 - Tree with 0–2 children per node
 - Left & right child / subtree

Tree Traversal

- Often we want to
 - Find all nodes in tree
 - Determine their relationship
- Can do this by
 - Walking through the tree in a prescribed order
 - Visiting the nodes as they are encountered
- Process is called tree traversal

Tree Traversal

- Goal
 - Visit every node in binary tree
- Approaches
 - Breadth first ⇒ closer nodes first
 - Depth first
 - Preorder \Rightarrow parent, left child, right child
 - Inorder \Rightarrow left child, parent, right child
 - Postorder ⇒ left child, right child, parent

NOTE: left visited before right

Tree Traversal Methods

- Pre-order
 - 1. Visit node // first
 - 2. Recursively visit left subtree
 - 3. Recursively visit right subtree
- In-order
 - 1. Recursively visit left subtree
 - 2. Visit node // second
 - 3. Recursively right subtree
- Post-order
 - 1. Recursively visit left subtree
 - 2. Recursively visit right subtree
 - 3. Visit node // last

Big O - O(n)

Tree Traversal Examples

- Breadth-first
 - + × / 2 3 8 4
- Pre-order (prefix)
 - + × 2 3 / 8 4
- In-order (infix)
 - 2 × 3 + 8 / 4
- Post-order (postfix)
 - 2 3 × 8 4 / +

Expression tree

Binary Tree Implementation

```
    Choice #1: Using a class to represent a Node
Class Node {
KeyType key;
Node left, right; // null represents empty tree
}
```

Node root = null; // Empty Tree

- Choice #2: Using a Polymorphic Binary Tree
 - An empty tree is represented using an object

Types of Binary Trees

Degenerate

- Mostly 1 child/node
- Height = O(n)
- Similar to linear list

Balanced

- Mostly 2 child/node
- Height = $O(\log(n))$
- 2^(height + 1) 1 = n (# of nodes)
- Useful for searches

Degenerate binary tree Balanced binary tree

Binary Search Trees

- Key property
 - Value at node
 - Smaller values in left subtree
 - Larger values in right subtree
 - Example

• Y > X

• Y < Z

Binary Search Trees

Non-binary search tree

Tree Traversal Examples

In-order

• 17, 32, 44, 48, 50, 62, 78, 88

Binary search tree

Example Binary Searches

• Find (2)

Example Binary Searches

• Find (25)

Binary Search Properties

- Time of search
 - Proportional to height of tree
 - Balanced binary tree
 - O(log(n)) time
 - Degenerate tree
 - O(n) time
 - Like searching linked list/unsorted array
- Traversal
 - O(n)
- Requires
 - Ability to compare key values

Binary Search Tree Construction

- How to build & maintain binary trees?
 - Insertion
 - Deletion
- Maintain key property (invariant)
 - Smaller values in left subtree
 - Larger values in right subtree

Binary Search Tree – Insertion

<u>Algorithm</u>

If tree is empty, just add the entry (which becomes root) else

- 1. Perform search for value X
- 2. Search will end at node Y (if X not in tree)
- 3. If X < Y, insert new leaf X as new left subtree for Y
- 4. If X > Y, insert new leaf X as new right subtree for Y

Observations

- O(log(n)) operation for balanced tree
- Insertions may unbalance the tree
- Value will be added a new leaf
- Order of insertion of values determines the tree shape

Example Insertion

• Insert (20)

20 > 10, right

20 < 30, left

20 < 25, left

Insert 20 on left

Binary Search Tree – Deletion

<u>Algorithm</u>

- 1. Perform search for value X
- 2. If X is a leaf, delete X
- 3. Else // must delete internal node
 - a) Replace with largest value Y on left subtree OR smallest value Z on right subtree
 - b) Delete replacement value (Y or Z) from subtree

Observation

- O(log(n)) operation for balanced tree
- Deletions may unbalance tree

Example Deletion (Leaf)

• Delete (25)

Example Deletion (Internal Node)

• Delete (10)

Replacing 10 with largest value in left subtree

Replacing 5 with largest value in left subtree **Deleting leaf**

Example Deletion (Internal Node)

• Delete (10)

Replacing 10 with smallest value in right subtree **Deleting leaf**

Resulting tree

Building Maps w/ Search Trees

- Binary Search trees often used to implement maps
 - Each non-empty node contains
 - Key
 - Value
 - Left and right child
- Need to be able to compare keys
 - Generic type <K extends Comparable<K>>
 - Denotes any type K that can be compared to K's

BST (Binary Search Tree) Implementation

- Implementing Tree using traditional approach
- Based on the BST definition below let's see how to implement typical BST Operations (constructor, add, print, find, isEmpty, isFull, size, height, etc.)

```
public class BinarySearchTree <K extends Comparable<K>, V> {
    private class Node {
        private K key;
        private V data;
        private Node left, right;
        public Node(K key, V data) {
            this.key = key;
            this.data = data;
        }
    }
    private Node root;
}
```

• See code distribution: LectureBinarySearchTreeCode.zip

BST (Duplicate Keys)

- You can handle duplicate keys by arbitrarily placing duplicates of an entry in the entry's right subtree
- Updated BST definition
 - Data in a node is greater than the data in the node's left subtree
 - Data in a node is less than or equal to the data in the node's right subtree

BST Testing

- How can we test the correctness of BST Methods?
- What is the best approach?

Binary Tree Visualizer

http://btv.melezinek.cz/binary-search-tree.html