
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Trees & Binary Search Trees

Department of Computer Science

University of Maryland, College Park

Trees
• Trees are hierarchical data structures

• One-to-many relationship between elements

• Tree node / element

• Contains data

• Referred to by only 1 (parent) node

• Contains links to any number of (children) nodes

Parent node

Children nodes

© Department of Computer Science UMD

Trees
• Terminology

• Root  node with no parent

• Leaf  all nodes with no children

• Interior  all nodes with children

Root node

Leaf nodes

Interior nodes

© Department of Computer Science UMD

Trees
• Terminology

• Sibling  node with same parent

• Descendent  children nodes & their descendants

• Subtree  portion of tree that is a tree by itself

 a node and its descendants

Subtree

Siblings

© Department of Computer Science UMD

Trees
• Depth → Distance from the node to the root of the tree

• Depth of the root is 0

• Depth of a node is 1 + depth of its parent

• Level

• The level of a node is its depth (e.g., level of root node is 0)

• All the nodes of a tree with the same depth

• Height → Number of edges on the longest downward path from the root to a leaf node

• A tree with one node has a height of 0

Height = 3

© Department of Computer Science UMD

Binary Trees
• Binary tree

• Tree with 0–2 children per node

• Left & right child / subtree

Binary Tree

Left

Child

Parent

Right

Child

© Department of Computer Science UMD

Tree Traversal
• Often we want to

• Find all nodes in tree

• Determine their relationship

• Can do this by

• Walking through the tree in a prescribed order

• Visiting the nodes as they are encountered

• Process is called tree traversal

© Department of Computer Science UMD

Tree Traversal
• Goal

• Visit every node in binary tree

• Approaches

• Breadth first  closer nodes first

• Depth first

• Preorder  parent, left child, right child

• Inorder  left child, parent, right child

• Postorder  left child, right child, parent

NOTE: left visited before right

© Department of Computer Science UMD

Tree Traversal Methods
• Pre-order

1. Visit node // first

2. Recursively visit left subtree

3. Recursively visit right subtree

• In-order

1. Recursively visit left subtree

2. Visit node // second

3. Recursively right subtree

• Post-order

1. Recursively visit left subtree

2. Recursively visit right subtree

3. Visit node // last

Big O – O(n)

© Department of Computer Science UMD

Tree Traversal Examples
• Breadth-first

• +  / 2 3 8 4

• Pre-order (prefix)

• +  2 3 / 8 4

• In-order (infix)

• 2  3 + 8 / 4

• Post-order (postfix)

• 2 3  8 4 / +

+

 /

2 3 8 4

Expression tree

© Department of Computer Science UMD

Binary Tree Implementation
• Choice #1: Using a class to represent a Node

Class Node {

KeyType key;

Node left, right; // null represents empty tree

}

Node root = null; // Empty Tree

• Choice #2: Using a Polymorphic Binary Tree

• An empty tree is represented using an object

© Department of Computer Science UMD

Types of Binary Trees
• Degenerate

• Mostly 1 child/node

• Height = O(n)

• Similar to linear list

• Balanced

• Mostly 2 child/node

• Height = O(log(n))

• 2(height + 1) - 1 = n (# of nodes)

• Useful for searches

Degenerate

binary tree

Balanced

binary tree

© Department of Computer Science UMD

Binary Search Trees
• Key property

• Value at node

• Smaller values in left subtree

• Larger values in right subtree

• Example

• Y > X

• Y < Z

X

Y

Z

© Department of Computer Science UMD

Binary Search Trees
• Examples

Binary

search trees

Non-binary

search tree

5

10

30

2 25 45

5

10

45

2 25 30

5

10

30

2

25

45

© Department of Computer Science UMD

Tree Traversal Examples
• In-order

• 17, 32, 44, 48, 50, 62, 78, 88

88

44

17 78

32 50

48 62

Binary search tree

Sorted

order!

© Department of Computer Science UMD

Example Binary Searches
• Find (2)

5

10

30

2 25 45

5

10

30

2

25

45

2 < 10, left

2 < 5, left

2 = 2, found

2 < 5, left

2 = 2, found

© Department of Computer Science UMD

Example Binary Searches
• Find (25)

5

10

30

2 25 45

5

10

30

2

25

45

25 > 10, right

25 < 30, left

25 = 25, found

25 > 5, right

25 < 45, left

25 < 30, left

25 > 10, right

25 = 25, found

© Department of Computer Science UMD

Binary Search Properties
• Time of search

• Proportional to height of tree

• Balanced binary tree

• O(log(n)) time

• Degenerate tree

• O(n) time

• Like searching linked list/unsorted array

• Traversal

• O(n)

• Requires

• Ability to compare key values

© Department of Computer Science UMD

Binary Search Tree Construction
• How to build & maintain binary trees?

• Insertion

• Deletion

• Maintain key property (invariant)

• Smaller values in left subtree

• Larger values in right subtree

© Department of Computer Science UMD

Binary Search Tree – Insertion
• Algorithm

If tree is empty, just add the entry (which becomes root)

else

1. Perform search for value X

2. Search will end at node Y (if X not in tree)

3. If X < Y, insert new leaf X as new left subtree for Y

4. If X > Y, insert new leaf X as new right subtree for Y

• Observations

• O(log(n)) operation for balanced tree

• Insertions may unbalance the tree

• Value will be added a new leaf

• Order of insertion of values determines the tree shape

© Department of Computer Science UMD

Example Insertion
• Insert (20)

5

10

30

2 25 45

20 > 10, right

20 < 30, left

20 < 25, left

Insert 20 on left

20

© Department of Computer Science UMD

Binary Search Tree – Deletion
• Algorithm

1. Perform search for value X

2. If X is a leaf, delete X

3. Else // must delete internal node

a) Replace with largest value Y on left subtree

OR smallest value Z on right subtree

b) Delete replacement value (Y or Z) from subtree

• Observation

• O(log(n)) operation for balanced tree

• Deletions may unbalance tree

© Department of Computer Science UMD

Example Deletion (Leaf)
• Delete (25)

5

10

30

2 25 45

25 > 10, right

25 < 30, left

25 = 25, delete

5

10

30

2 45

© Department of Computer Science UMD

Example Deletion (Internal Node)
• Delete (10)

5

10

30

2 25 45

5

5

30

2 25 45

2

5

30

2 25 45

Replacing 10

with largest

value in left

subtree

Replacing 5

with largest

value in left

subtree

Deleting leaf

© Department of Computer Science UMD

Example Deletion (Internal Node)
• Delete (10)

5

10

30

2 25 45

5

25

30

2 25 45

5

25

30

2 45

Replacing 10

with smallest

value in right

subtree

Deleting leaf Resulting tree

© Department of Computer Science UMD

Building Maps w/ Search Trees
• Binary Search trees often used to implement maps

• Each non-empty node contains

• Key

• Value

• Left and right child

• Need to be able to compare keys

• Generic type <K extends Comparable<K>>

• Denotes any type K that can be compared to K’s

© Department of Computer Science UMD

BST (Binary Search Tree) Implementation
• Implementing Tree using traditional approach

• Based on the BST definition below let’s see how to implement typical
BST Operations (constructor, add, print, find, isEmpty, isFull, size, height,
etc.)

public class BinarySearchTree <K extends Comparable<K>, V> {

private class Node {

private K key;

private V data;

private Node left, right;

public Node(K key, V data) {

this.key = key;

this.data = data;

}

}

private Node root;

}

• See code distribution: LectureBinarySearchTreeCode.zip

© Department of Computer Science UMD

BST (Duplicate Keys)
• You can handle duplicate keys by arbitrarily placing duplicates of an

entry in the entry’s right subtree

• Updated BST definition

• Data in a node is greater than the data in the node’s left subtree

• Data in a node is less than or equal to the data in the node’s right

subtree

© Department of Computer Science UMD

BST Testing
• How can we test the correctness of BST Methods?

• What is the best approach?

© Department of Computer Science UMD

Binary Tree Visualizer
• http://btv.melezinek.cz/binary-search-tree.html

© Department of Computer Science UMD

http://btv.melezinek.cz/binary-search-tree.html

