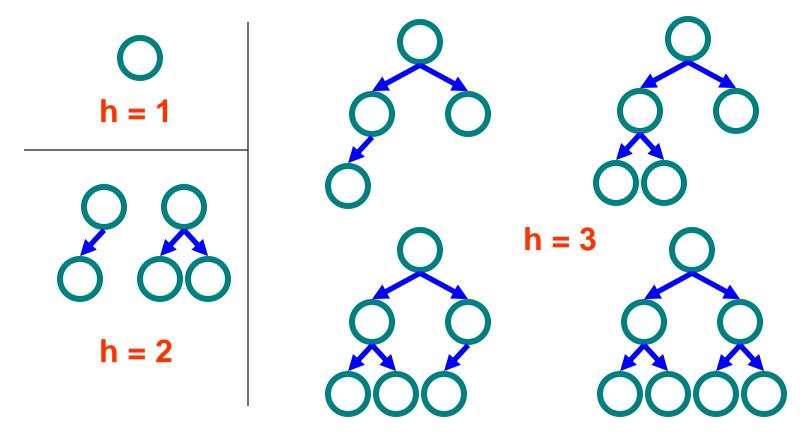
CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Heaps & Priority Queues

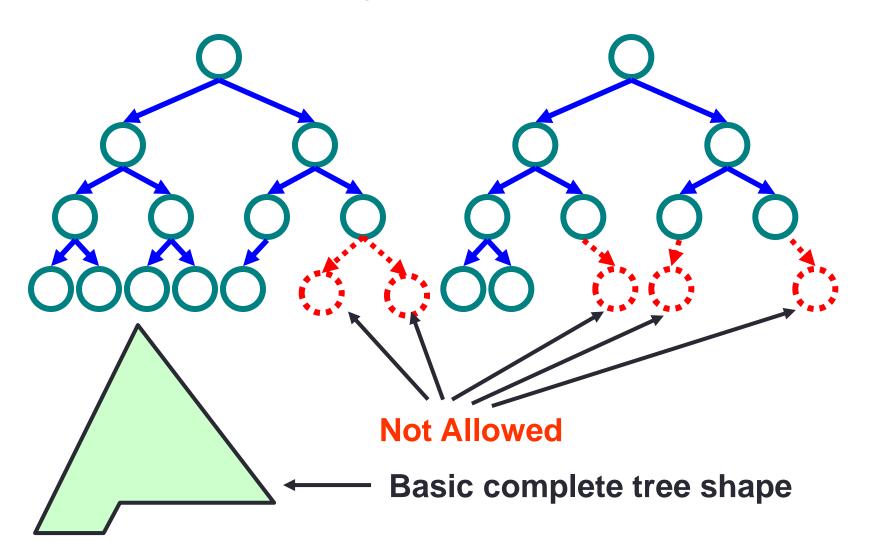
Department of Computer Science University of Maryland, College Park

Complete Binary Trees

- A binary tree (height h) where:
 - Perfect tree to level h-1
 - Leaves at level h are as far left as possible



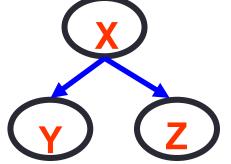
Complete Binary Trees

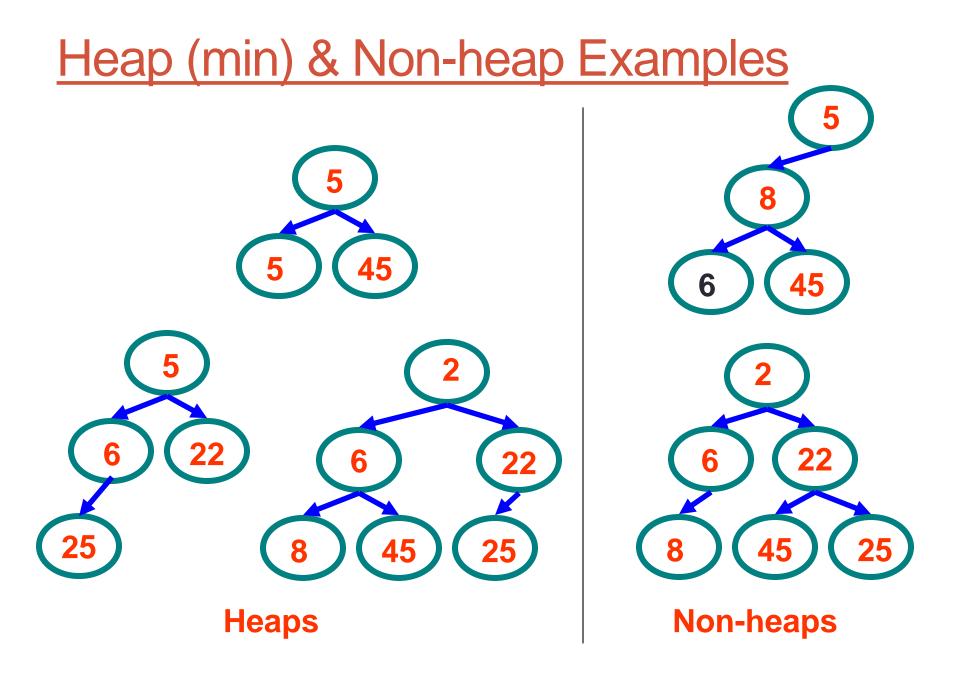


Heaps

Two key properties

- Complete binary tree (shape property)
- Value at node (value property)
 - Minheap
 - Value at the node is smaller than or equal to values in subtrees (X \leq Y, X \leq Z) in below tree
 - Maxheap
 - Value at the node is larger than or equal to values in subtrees (X ≥ Y, X ≥ Z) in below tree
- We will use minheap in our discussion
- Do not confuse the term heap used for object allocation with heap used for this data structure





Heap Properties

- Heaps are balanced trees
 - Height = $\log_2(n) = O(\log(n))$
- Can find smallest/largest element easily
 - Always at top of the heap!
 - Heap can track either min or max, but not both

<u>Heap</u>

- Key operations
 - Insert (X)
 - getSmallest ()
- Key applications
 - Heapsort
 - Priority queue

Heap Operations - Insert(X)

Algorithm

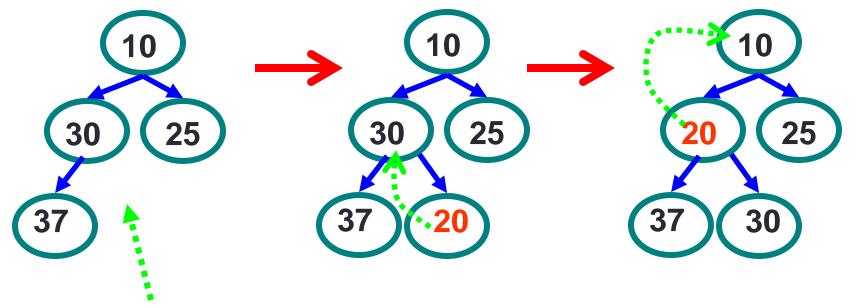
- Add X to end of tree
- While (X < parent)
 Swap X with parer

Swap X with parent // X bubbles up tree

- Complexity
 - # of swaps proportional to height of tree
 - O(log(n))

Heap Insert Example

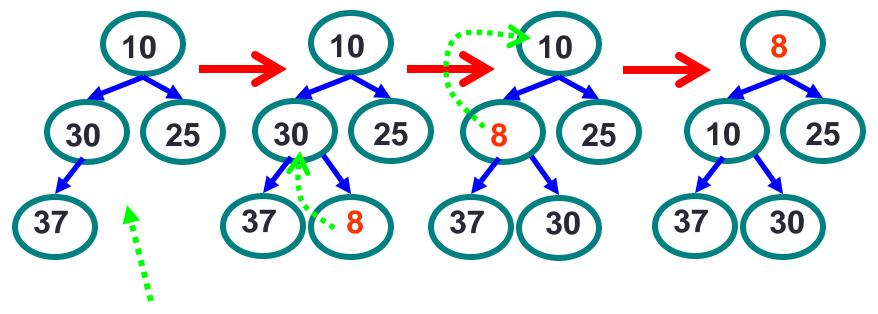
Insert (20)



1) Insert to end of tree 2) Compare to parent, swap if parent key larger 3) Insert complete

Heap Insert Example

• Insert (8)



1) Insert to end of tree 2) Compare to parent, swap if parent key larger 3) Insert complete

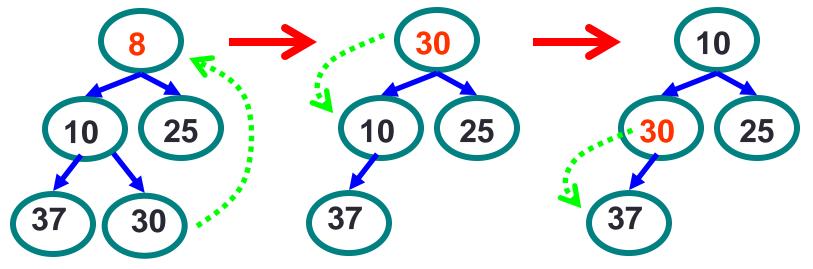
Heap Operation - getSmallest()

Algorithm

- Get smallest node at root
- Replace root with X (rightmost node) at end of tree
- While (X > child)
 - Swap X with smallest child // X drops down tree
- Return smallest node
- Complexity
 - # swaps proportional to height of tree
 - O(log(n))

Heap GetSmallest Example

getSmallest ()

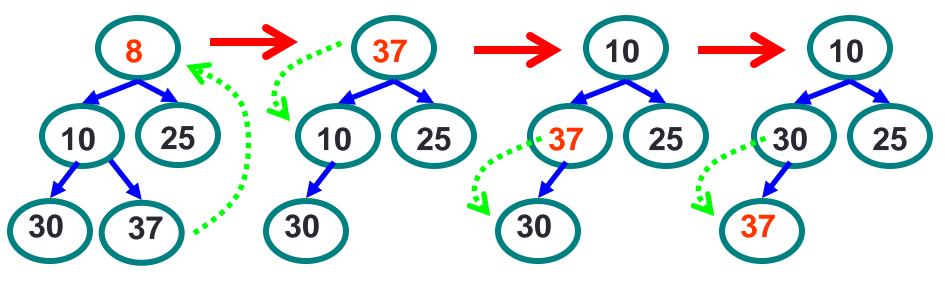


1) Replace root with end of tree

2) Compare node to 3) Repeat swap children, if larger swap if needed with smallest child

Heap GetSmallest Example

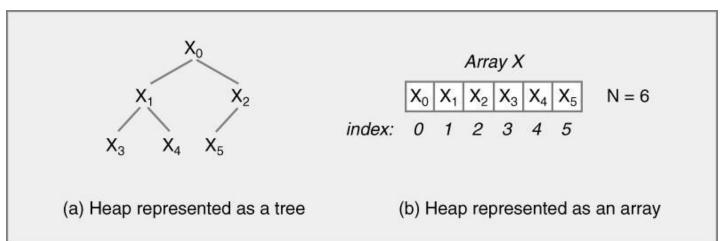
getSmallest ()



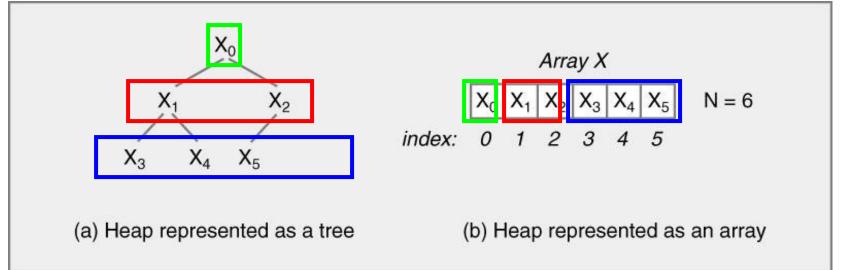
1) Replace root with end of tree

2) Compare node to 3) Repeat swap children, if larger swap if needed with smallest child

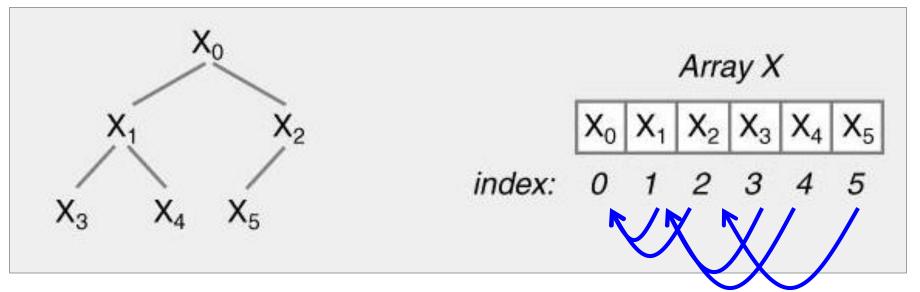
- Can implement heap as array
 - Store nodes in array elements
 - Assign location (index) for elements using formula
- Observations
 - Compact representation
 - Edges are implicit (no storage required)
 - Works well for complete trees (no wasted space)



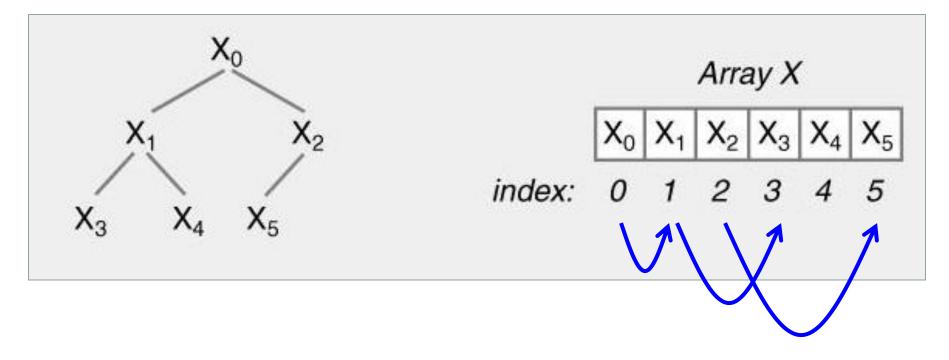
- $\lfloor \rfloor \rightarrow$ floor (e.g., 1.7 \rightarrow 1, 2 \rightarrow 2)
- Calculating node locations
 - Array index i starts at 0
 - Parent(i) = $\lfloor (i 1) / 2 \rfloor$
 - LeftChild(i) = $2 \times i + 1$
 - RightChild(i) = $2 \times i + 2$



- Example
 - Parent(i) = [(i − 1) / 2]
 - Parent(1) = $\lfloor (1-1)/2 \rfloor = \lfloor 0/2 \rfloor = 0$
 - Parent(2) = $\lfloor (2 1) / 2 \rfloor = \lfloor 1 / 2 \rfloor = 0$
 - Parent(3) = $\lfloor (3 1) / 2 \rfloor = \lfloor 2 / 2 \rfloor = 1$
 - Parent(4) = $\lfloor (4-1)/2 \rfloor = \lfloor 3/2 \rfloor = 1$
 - Parent(5) = $\lfloor (5-1)/2 \rfloor = \lfloor 4/2 \rfloor = 2$



- Example
 - LeftChild(i) = $2 \times i + 1$
 - LeftChild(0) = 2 × 0 +1 = 1
 - LeftChild(1) = $2 \times 1 + 1 = 3$
 - LeftChild(2) = 2 × 2 +1 = 5



- Example
 - LeftChild(i) = $2 \times i + 1$
 - RightChild(0) = 2 × 0 +2 = 2
 - RightChild(1) = $2 \times 1 + 2 = 4$

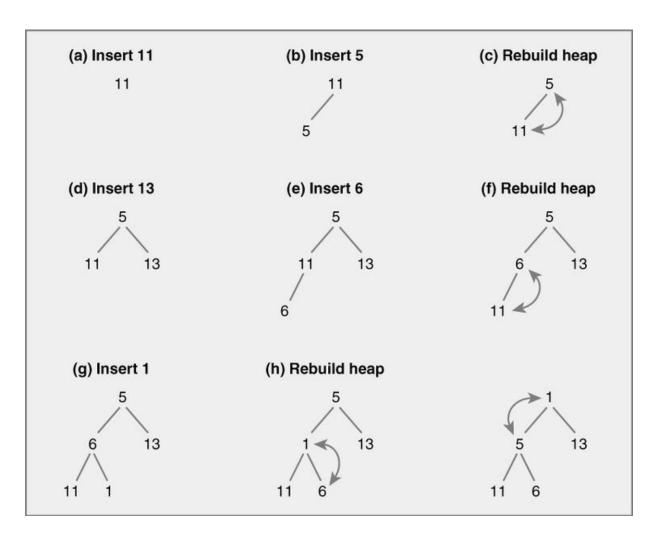
Heap Application - Heapsort

- Use heaps to sort values
 - Heap keeps track of smallest/largest element in heap
- Algorithm
 - 1. Create heap
 - 2. Insert values in heap
 - 3. Remove values from heap (in ascending/descending order)
- Complexity
 - O(nlog(n))

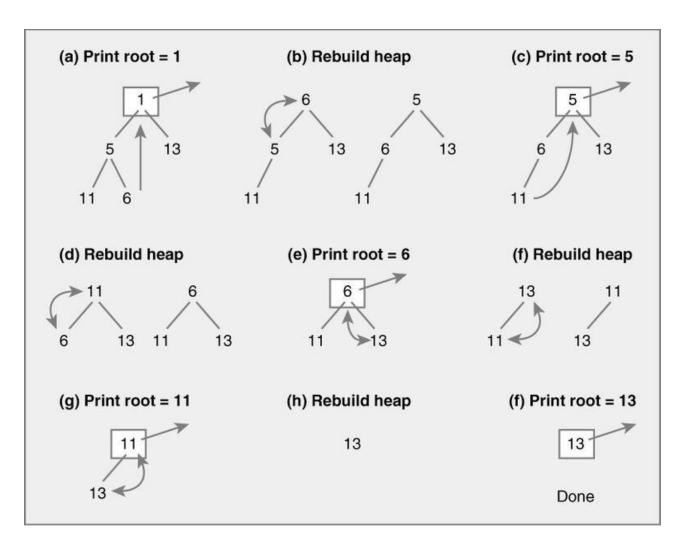
Heapsort Example

- Input
 - 11, 5, 13, 6, 1
- View heap during insert, removal
 - As tree
 - As array

Heapsort - Insert Values

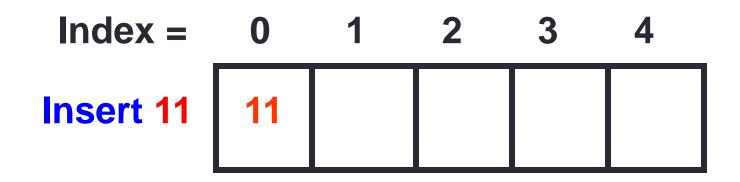


Heapsort - Remove Values

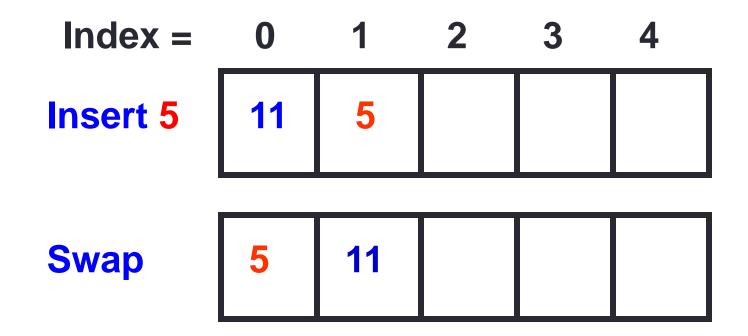


Input

• 11, 5, 13, 6, 1



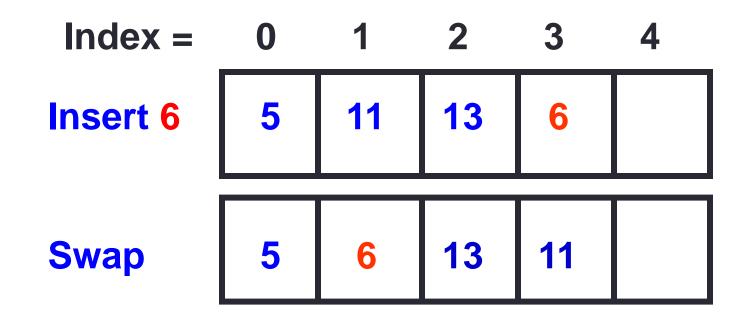
Input



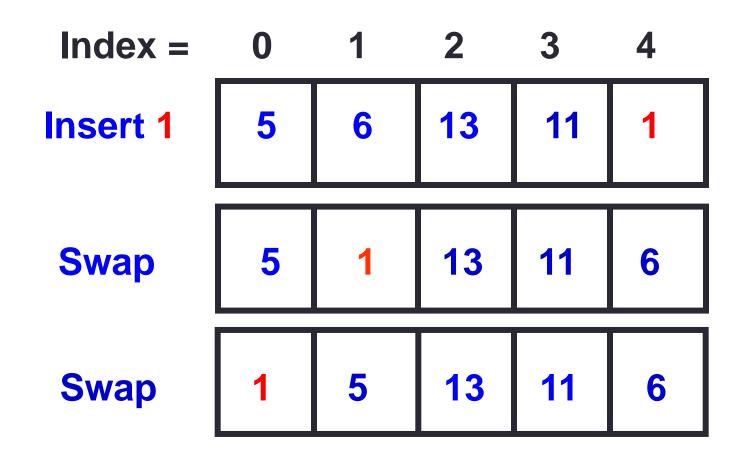
Input

• 11, 5, 13, 6, 1

- Input
 - 11, 5, 13, 6, 1

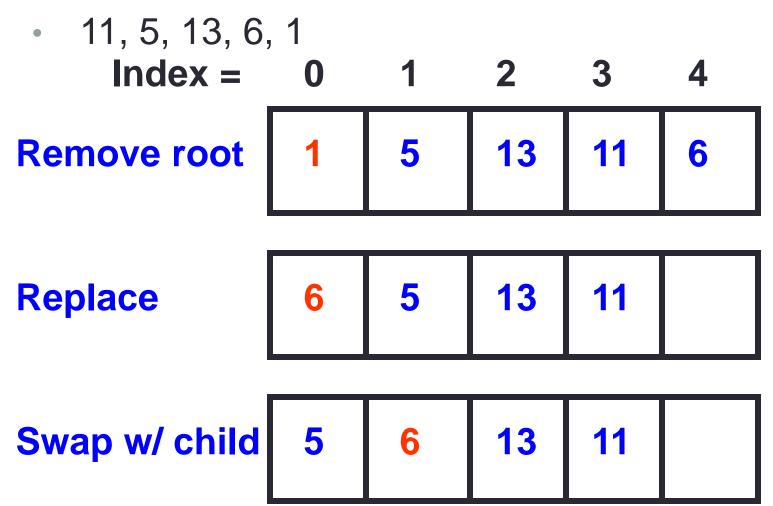


- Input
 - 11, 5, 13, 6, 1



Heapsort - Removing 1

Input



Heapsort - Removing 5

Input

 11, 5, 13, 6, Index = 	1 0	1	2	3	4
Remove root	5	6	13	11	
Replace	11	6	13		
Swap w/ child	6	11	13		

Heap Application - Priority Queue

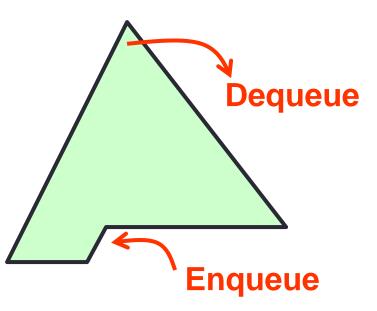
Queue

- Linear data structure
- First-in First-out (FIFO)
- Implement as array / linked list

Heap Application - Priority Queue

Priority queue

- Elements are assigned priority value
- Higher priority elements are taken out first
- Implement as heap
 - Enqueue \Rightarrow insert()
 - Dequeue \Rightarrow getSmallest()



Priority Queue

- Properties
 - Lower value = higher priority
 - Heap keeps highest priority items in front
- <u>Complexity</u>
 - Enqueue \Rightarrow insert() = O(log(n))
 - Dequeue \Rightarrow getSmallest() = O(log(n))
 - For any heap

Heap vs. Binary Search Tree

Binary search tree

- Keeps values in sorted order
- Find any value
 - O(log(n)) for balanced tree
 - O(n) for degenerate tree (worst case)

• <u>Heap</u>

- Keeps smaller values in front
- Find minimum (if minheap), maximum (if maxheap) value
 - O(log(n)) for any heap

About Heap Implementation

Implementing a heap

http://www.cs.umd.edu/~nelson/classes/resources/heapvideos/

 This videos illustrates the process a programmer (Prof. Bill Pugh in this case) goes through while implementing code. This video was filmed in Dr. Bill Pugh's lecture. Keep in mind that in this video some bugs might be present in the implementation as the testing phase has not been completed yet