
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Heaps & Priority Queues

Department of Computer Science

University of Maryland, College Park

Complete Binary Trees
• A binary tree (height h) where:

• Perfect tree to level h-1

• Leaves at level h are as far left as possible

h = 2

h = 3

h = 1

© Department of Computer Science UMD

Complete Binary Trees

Not Allowed

Basic complete tree shape

© Department of Computer Science UMD

Heaps
• Two key properties

• Complete binary tree (shape property)

• Value at node (value property)

• Minheap

• Value at the node is smaller than or equal to values in subtrees (X 

Y, X  Z) in below tree

• Maxheap

• Value at the node is larger than or equal to values in subtrees (X ≥ Y,

X ≥ Z) in below tree

• We will use minheap in our discussion

• Do not confuse the term heap used for object allocation with heap used for

this data structure

X

Y Z

© Department of Computer Science UMD

Heap (min) & Non-heap Examples

Heaps Non-heaps

6

2

22

8 45 25

6

2

22

8 45 25

8

6 45

5

6 22

25

5

5 45

5

© Department of Computer Science UMD

Heap Properties
• Heaps are balanced trees

• Height = log2(n) = O(log(n))

• Can find smallest/largest element easily

• Always at top of the heap!

• Heap can track either min or max, but not both

© Department of Computer Science UMD

Heap
• Key operations

• Insert (X)

• getSmallest ()

• Key applications

• Heapsort

• Priority queue

© Department of Computer Science UMD

Heap Operations - Insert(X)
• Algorithm

• Add X to end of tree

• While (X < parent)

Swap X with parent // X bubbles up tree

• Complexity

• # of swaps proportional to height of tree

• O(log(n))

© Department of Computer Science UMD

Heap Insert Example
• Insert (20)

10

30 25

37

10

30 25

37 20

10

20 25

37 30

1) Insert to

end of tree

2) Compare to parent,

swap if parent key larger

3) Insert

complete

© Department of Computer Science UMD

Heap Insert Example
• Insert (8)

10

30 25

37

10

30 25

37 8

10

8 25

37 30

8

10 25

37 30

1) Insert to

end of tree

2) Compare to parent,

swap if parent key larger

3) Insert

complete

© Department of Computer Science UMD

Heap Operation - getSmallest()
• Algorithm

• Get smallest node at root

• Replace root with X (rightmost node) at end of tree

• While (X > child)

Swap X with smallest child // X drops down tree

• Return smallest node

• Complexity

• # swaps proportional to height of tree

• O(log(n))

© Department of Computer Science UMD

Heap GetSmallest Example
• getSmallest ()

8

10 25

37

30

10 25

37

10

30 25

3730

1) Replace root

with end of tree

2) Compare node to

children, if larger swap

with smallest child

3) Repeat swap

if needed

© Department of Computer Science UMD

Heap GetSmallest Example
• getSmallest ()

8

10 25

30

37

10 25

30

10

37 25

3037

1) Replace root

with end of tree

2) Compare node to

children, if larger swap

with smallest child

3) Repeat swap

if needed

10

30 25

37

© Department of Computer Science UMD

Heap Implementation
• Can implement heap as array

• Store nodes in array elements

• Assign location (index) for elements using formula

• Observations

• Compact representation

• Edges are implicit (no storage required)

• Works well for complete trees (no wasted space)

© Department of Computer Science UMD

Heap Implementation
•  → floor (e.g., 1.7 → 1, 2 → 2)

• Calculating node locations

• Array index i starts at 0

• Parent(i) =  (i – 1) / 2 

• LeftChild(i) = 2  i +1

• RightChild(i) = 2  i +2

© Department of Computer Science UMD

Heap Implementation
• Example

• Parent(i) =  (i – 1) / 2 

• Parent(1) =  (1 – 1) / 2  =  0 / 2  = 0

• Parent(2) =  (2 – 1) / 2  =  1 / 2  = 0

• Parent(3) =  (3 – 1) / 2  =  2 / 2  = 1

• Parent(4) =  (4 – 1) / 2  =  3 / 2  = 1

• Parent(5) =  (5 – 1) / 2  =  4 / 2  = 2

© Department of Computer Science UMD

Heap Implementation
• Example

• LeftChild(i) = 2  i +1

• LeftChild(0) = 2  0 +1 = 1

• LeftChild(1) = 2  1 +1 = 3

• LeftChild(2) = 2  2 +1 = 5

© Department of Computer Science UMD

Heap Implementation
• Example

• LeftChild(i) = 2  i +1

• RightChild(0) = 2  0 +2 = 2

• RightChild(1) = 2  1 +2 = 4

© Department of Computer Science UMD

Heap Application - Heapsort
• Use heaps to sort values

• Heap keeps track of smallest/largest element in heap

• Algorithm

1. Create heap

2. Insert values in heap

3. Remove values from heap (in ascending/descending

order)

• Complexity

• O(nlog(n))

© Department of Computer Science UMD

Heapsort Example
• Input

• 11, 5, 13, 6, 1

• View heap during insert, removal

• As tree

• As array

© Department of Computer Science UMD

Heapsort - Insert Values

© Department of Computer Science UMD

Heapsort - Remove Values

© Department of Computer Science UMD

Heapsort - Inserting 11
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 11 11

© Department of Computer Science UMD

Heapsort - Inserting 5
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 5 11 5

Swap 5 11

© Department of Computer Science UMD

Heapsort - Inserting 13
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 13 5 11 13

© Department of Computer Science UMD

Heapsort - Inserting 6
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 6 5 11 13 6

Swap 5 6 13 11

© Department of Computer Science UMD

Heapsort - Inserting 1
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 1 5 6 13 11 1

Swap 5 1 13 11 6

© Department of Computer Science UMD

Swap 1 5 13 11 6

Heapsort - Removing 1
• Input

• 11, 5, 13, 6, 1
Index = 0 1 2 3 4

Remove root 1 5 13 11 6

Replace 6 5 13 11

Swap w/ child 5 6 13 11

© Department of Computer Science UMD

Heapsort - Removing 5
• Input

• 11, 5, 13, 6, 1
Index = 0 1 2 3 4

Remove root 5 6 13 11

Replace 11 6 13

Swap w/ child 6 11 13

© Department of Computer Science UMD

Heap Application - Priority Queue
• Queue

• Linear data structure

• First-in First-out (FIFO)

• Implement as array / linked list

DequeueEnqueue

© Department of Computer Science UMD

Heap Application - Priority Queue
• Priority queue

• Elements are assigned priority value

• Higher priority elements are taken out first

• Implement as heap

• Enqueue  insert()

• Dequeue  getSmallest()

Dequeue

Enqueue

© Department of Computer Science UMD

Priority Queue
• Properties

• Lower value = higher priority

• Heap keeps highest priority items in front

• Complexity

• Enqueue  insert() = O(log(n))

• Dequeue  getSmallest() = O(log(n))

• For any heap

© Department of Computer Science UMD

Heap vs. Binary Search Tree
• Binary search tree

• Keeps values in sorted order

• Find any value

• O(log(n)) for balanced tree

• O(n) for degenerate tree (worst case)

• Heap

• Keeps smaller values in front

• Find minimum (if minheap), maximum (if maxheap) value

• O(log(n)) for any heap

© Department of Computer Science UMD

About Heap Implementation
• Implementing a heap

http://www.cs.umd.edu/~nelson/classes/resources/heapvideos/

• This videos illustrates the process a programmer (Prof. Bill Pugh in

this case) goes through while implementing code. This video was

filmed in Dr. Bill Pugh's lecture. Keep in mind that in this video some

bugs might be present in the implementation as the testing phase has

not been completed yet

© Department of Computer Science UMD

http://www.cs.umd.edu/~nelson/classes/resources/heapvideos/

