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Complete Binary Trees
• A binary tree (height h) where:

• Perfect tree to level h-1

• Leaves at level h are as far left as possible

h = 2

h = 3

h = 1

© Department of Computer Science UMD



Complete Binary Trees

Not Allowed

Basic complete tree shape
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Heaps
• Two key properties

• Complete binary tree (shape property)

• Value at node (value property)

• Minheap

• Value at the node is smaller than or equal to values in subtrees (X 

Y, X  Z) in below tree

• Maxheap

• Value at the node is larger than or equal to values in subtrees (X ≥ Y, 

X ≥ Z) in below tree

• We will use minheap in our discussion

• Do not confuse the term heap used for object allocation with heap used for 

this data structure

X

Y Z
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Heap (min) & Non-heap Examples

Heaps Non-heaps
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Heap Properties
• Heaps are balanced trees

• Height = log2(n) = O(log(n))

• Can find smallest/largest element easily

• Always at top of the heap!

• Heap can track either min or max, but not both
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Heap
• Key operations

• Insert ( X )

• getSmallest ( )

• Key applications

• Heapsort

• Priority queue
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Heap Operations - Insert( X )
• Algorithm

• Add X to end of tree

• While (X < parent)

Swap X with parent // X bubbles up tree

• Complexity

• # of swaps proportional to height of tree

• O( log(n) )
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Heap Insert Example
• Insert ( 20 )
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30 25

37 20
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1) Insert to 

end of tree

2) Compare to parent, 

swap if parent key larger

3) Insert 

complete
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Heap Insert Example
• Insert ( 8 )
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1) Insert to 

end of tree

2) Compare to parent, 

swap if parent key larger

3) Insert 

complete

© Department of Computer Science UMD



Heap Operation - getSmallest()
• Algorithm

• Get smallest node at root

• Replace root with X (rightmost node) at end of tree

• While ( X > child ) 

Swap X with smallest child   // X drops down tree

• Return smallest node

• Complexity

• # swaps proportional to height of tree

• O( log(n) )
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Heap GetSmallest Example
• getSmallest ()
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1) Replace root 

with end of tree

2) Compare node to 

children, if larger swap 

with smallest child

3) Repeat swap 

if needed
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Heap GetSmallest Example
• getSmallest ()
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1) Replace root 

with end of tree

2) Compare node to 

children, if larger swap 

with smallest child

3) Repeat swap 

if needed

10

30 25

37
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Heap Implementation
• Can implement heap as array

• Store nodes in array elements

• Assign location (index) for elements using formula

• Observations

• Compact representation

• Edges are implicit (no storage required)

• Works well for complete trees (no wasted space)
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Heap Implementation
•  → floor (e.g., 1.7 → 1, 2 → 2)

• Calculating node locations

• Array index i starts at 0

• Parent(i) =  ( i – 1 ) / 2 

• LeftChild(i) = 2  i +1

• RightChild(i) = 2  i +2
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Heap Implementation
• Example

• Parent(i) =  ( i – 1 ) / 2 

• Parent(1) =  ( 1 – 1 ) / 2  =  0 / 2  = 0

• Parent(2) =  ( 2 – 1 ) / 2  =  1 / 2  = 0 

• Parent(3) =  ( 3 – 1 ) / 2  =  2 / 2  = 1

• Parent(4) =  ( 4 – 1 ) / 2  =  3 / 2  = 1

• Parent(5) =  ( 5 – 1 ) / 2  =  4 / 2  = 2
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Heap Implementation
• Example

• LeftChild(i)  = 2  i +1

• LeftChild(0) = 2  0 +1 = 1

• LeftChild(1) = 2  1 +1 = 3

• LeftChild(2) = 2  2 +1 = 5
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Heap Implementation
• Example

• LeftChild(i) = 2  i +1

• RightChild(0) = 2  0 +2 = 2

• RightChild(1) = 2  1 +2 = 4
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Heap Application - Heapsort
• Use heaps to sort values

• Heap keeps track of smallest/largest element in heap

• Algorithm

1. Create heap

2. Insert values in heap

3. Remove values from heap (in ascending/descending 

order)

• Complexity

• O(nlog(n))
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Heapsort Example
• Input

• 11, 5, 13, 6, 1

• View heap during insert, removal

• As tree

• As array
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Heapsort - Insert Values
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Heapsort - Remove Values
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Heapsort - Inserting 11
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 11 11
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Heapsort - Inserting 5
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 5 11 5

Swap 5 11
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Heapsort - Inserting 13
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 13 5 11 13
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Heapsort - Inserting 6
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 6 5 11 13 6

Swap 5 6 13 11
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Heapsort - Inserting 1
• Input

• 11, 5, 13, 6, 1

Index = 0 1 2 3 4

Insert 1 5 6 13 11 1

Swap 5 1 13 11      6
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Heapsort - Removing 1 
• Input

• 11, 5, 13, 6, 1
Index = 0 1 2 3 4

Remove root 1 5 13 11 6

Replace  6 5 13 11

Swap w/ child 5 6 13 11
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Heapsort - Removing 5
• Input

• 11, 5, 13, 6, 1
Index = 0 1 2 3 4

Remove root 5 6 13 11

Replace 11 6 13

Swap w/ child 6 11 13
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Heap Application - Priority Queue
• Queue

• Linear data structure

• First-in First-out (FIFO)

• Implement as array / linked list

DequeueEnqueue
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Heap Application - Priority Queue
• Priority queue

• Elements are assigned priority value

• Higher priority elements are taken out first

• Implement as heap

• Enqueue  insert( )

• Dequeue  getSmallest( )

Dequeue

Enqueue
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Priority Queue
• Properties

• Lower value = higher priority

• Heap keeps highest priority items in front

• Complexity

• Enqueue  insert( ) = O( log(n) )  

• Dequeue  getSmallest( ) = O( log(n) )

• For any heap
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Heap vs. Binary Search Tree
• Binary search tree

• Keeps values in sorted order

• Find any value

• O( log(n) ) for balanced tree

• O( n ) for degenerate tree (worst case)

• Heap

• Keeps smaller values in front

• Find minimum (if minheap), maximum (if maxheap) value

• O( log(n) ) for any heap
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About Heap Implementation
• Implementing a heap 

http://www.cs.umd.edu/~nelson/classes/resources/heapvideos/

• This videos illustrates the process a programmer (Prof. Bill Pugh in 

this case) goes through while implementing code. This video was 

filmed in Dr. Bill Pugh's lecture. Keep in mind that in this video some 

bugs might be present in the implementation as the testing phase has 

not been completed yet
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