
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Threads in Java

Department of Computer Science

University of Maryland, College Park

Daemon Threads
• Java threads types

• User

• Daemon

• Provide general services

• Typically, never terminate

• To set as daemon thread, call setDaemon() before

start()

• Program termination

• All user threads finish

• Daemon threads are terminated by JVM

© Department of Computer Science UMD

Threads - Scheduling
• Scheduler

• Determines which runnable threads to run

• When context switching takes place

• Can be based on thread priority

• Part of OS or Java Virtual Machine (JVM)

• Scheduling policy

• Non-preemptive (cooperative) scheduling

• Preemptive scheduling

© Department of Computer Science UMD

Threads - Non-preemptive Scheduling
• Threads continue execution until

• Thread terminates

• Executes instruction causing wait (e.g., IO)

• Thread volunteering to stop (invoking yield or sleep)

• Ready state equivalent to Runnable state

© Department of Computer Science UMD

Threads - Preemptive Scheduling
• Threads continue execution until

• Same reasons as non-preemptive scheduling

• Preempted by scheduler

© Department of Computer Science UMD

Thread Scheduling Observations
• Order thread is selected is indeterminate

• Depends on scheduler

• Scheduling may not be fair

• Some threads may execute more often

• Thread can block indefinitely (starvation)

• If other threads always execute first

• Your code should work correctly regardless the scheduling

policy in place

© Department of Computer Science UMD

Java Thread Example
public class ThreadNoJoin extends Thread {

public void run() {

for (int i = 1; i <= 3; i++) {

try {

Thread.sleep((int)(Math.random() * 3000));

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println(i);

}

}

public static void main(String[] args) {

Thread thread1 = new ThreadNoJoin();

Thread thread2 = new ThreadNoJoin();

thread1.start();

thread2.start();

System.out.println("Done");

}

}

• Example: ThreadNoJoin.java
• To understand this example better, let’s assume we want to make a sandwich where one person

(thread1) looks for bread, and another for tomato (thread2)

© Department of Computer Science UMD

Java Thread Example - Output
• Possible outputs

• 1,2,3,1,2,3,Done // thread 1, thread 2, main()

• 1,2,3,Done,1,2,3 // thread 1, main(), thread 2

• Done,1,2,3,1,2,3 // main(), thread 1, thread 2

• 1,1,2,2,3,Done,3 // main() & threads interleaved

thread 1: println 1, println 2, println 3

main (): thread 1, thread 2, println Done

thread 2: println 1, println 2, println 3

© Department of Computer Science UMD

Thread Class - join() Method
• Can wait for thread to terminate with join()

• Method prototype

• public final void join()

• Blocks thread executing join(). For example, if t1 is a

thread, t1.join() will block the thread executing t1.join()

(current thread). Current thread execution can continue

once t1 thread has finished

• Returns when thread is done

• Throws InterruptedException if interrupted

• Example: ThreadJoin.java

© Department of Computer Science UMD

About Join
• Important: You will limit the concurrency level if you do not

start/join correctly

• Suppose you want to run many threads concurrently. Start them

all and then execute the join for each one. Do not start one

thread, then join on that thread, start the second one, join on

that thread, etc.

• The following is WRONG as you are executing code sequentially

and not concurrently

t1.start()

t1.join()

t2.start()

t2.join()

• Feel free to use arrays, sets, etc., to keep track of your threads

© Department of Computer Science UMD

About Threads
• Common mistake - Calling the run() method. If you want to run

a thread you must execute start() and not call the run() method;

the run() method is called for you

• Thread.sleep - Suppose you have a thread object reference

(t1) and invoke t1.sleep(2000). Which thread will be sleeping

for 2 seconds? It will NOT be t1.

© Department of Computer Science UMD

Terminating Threads
• A thread ends when the run() method ends

• Sometimes we may need to stop a thread before it ends

• For example, you may have created several threads to find a

problem solution and once one thread finds it, there is no

need for the rest

• How to stop thread?

• Using stop() method - WRONG! This is a deprecated

method. Using it can lead to problems when data is shared

• Use interrupt() method

© Department of Computer Science UMD

Terminating Threads
• Using interrupt() method

• This method does not stop the thread. Instead, it notifies the

thread that it should terminate. The method sets a boolean

variable in the thread and that value can be checked by the

thread (by using the method interrupted())

• It is up to the thread to terminate or not

• public void run() {

while(!Thread.interrupted()) {

// work

}

// Release resources, cleaning tasks

}

• Example: InterruptExample.java

© Department of Computer Science UMD

Thread Example
• Swing uses a single-threaded model

• Long computations in the EDT freezes the GUI

• Example: Progress Bar Example

© Department of Computer Science UMD

