
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Iterator, Marker, Observer Design Patterns

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Design Patterns
• Descriptions of reusable solutions to common software design problems (e.g,

Iterator pattern)

• Captures the experience of experts

• Goals

• Solve common programming challenges

• Improve reliability of solution

• Aid rapid software development

• Useful for real-world applications

• Design patterns are like recipes – generic solutions to expected situations

• Design patterns are language independent

• Recognizing when and where to use design patterns requires familiarity &

experience

• Design pattern libraries serve as a glossary of idioms for understanding common,

but complex solutions

• Design patterns are used throughout the Java Class Libraries

© Department of Computer Science UMD

Iterator Pattern
• Definition

• Move through collection of objects without knowing its internal representation

• Where to use & benefits

• Use a standard interface to represent data objects

• Uses standard iterator built in each standard collection, like List

• Need to distinguish variations in the traversal of an aggregate

• Example

• Iterator for collection

• Original

• Examine elements of collection directly

• Using pattern

• Collection provides Iterator class for examining elements in collection

© Department of Computer Science UMD

Iterator Example
public interface Iterator<V> {

bool hasNext();

V next();

void remove();

}

Iterator<V> it = myCollection.iterator();

while (it.hasNext()) {

V x = it.next(); // finds all objects

… // in collection

}

© Department of Computer Science UMD

Marker Interface Pattern
• Definition

• Label semantic attributes of a class

• Where to use & benefits

• Need to indicate attribute(s) of a class

• Allows identification of attributes of objects without assuming they
are instances of any particular class

• Example

• Classes with desirable property GoodProperty

• Original

• Store flag for GoodProperty in each class

• Using pattern

• Label class using GoodProperty interface

• Examples from Java

• Cloneable

• Serializable

© Department of Computer Science UMD

Marker Interface Example
public interface SafePet { } // no methods

class Dog implements SafePet { … }

class Piranha { … }

Dog dog = new Dog();

Piranha piranha = new Piranha();

if (dog instanceof SafePet) … // True

if (piranha instanceof SafePet) … // False

© Department of Computer Science UMD

Observer Pattern
• Definition

• Updates all dependents of object automatically once object

changes state

• Where to use & benefits

• One change affects one or many objects

• Many objects behavior depends on one object state

• Need broadcast communication

• Maintain consistency between objects

• Observers do not need to constantly check for changes

© Department of Computer Science UMD

Observer Pattern
• Example

• Multiple windows (views) for single document

• Original

• Each window checks document

• Window updates image if document changes

• Think of window as asking “Are we there yet?”

• Using pattern

• Each window registers as observer for document

• Document notifies all of its observers when it

changes
Doc

Window

Doc

Window

Window

Window

© Department of Computer Science UMD

Observer Example
public interface Observer {

// Called when observed object o changes

public void update(Observable o, Object a)

}

public class Observable {

protected void setChanged()

protected void clearChanged()

boolean hasChanged()

void addObserver(Observer o)

void notifyObservers()

void notifyObservers(Object a)

}

public class MyWindow implements Observer {
public openDoc(Observable doc) {

doc.addObservers(this); // Adds window to list
}
public void update(Observable doc, Object arg) {

redraw(doc); // Displays updated document
}

}

public class MyDoc extends Observable {
public void edit() {

… // Edit document
setChanged(); // Mark change
notifyObservers(arg); // Invokes update()

}
}

© Department of Computer Science UMD

