
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Graphs & Graph Traversal

Department of Computer Science

University of Maryland, College Park

Graph Data Structures
• Many-to-many relationship between elements

• Each element has multiple predecessors

• Each element has multiple successors

© Department of Computer Science UMD

Graph Definitions
• Node

• Element of graph

• State

• List of adjacent/neighbor/successor nodes

• Edge

• Connection between two nodes

• State

• Endpoints of edge

A

© Department of Computer Science UMD

Graph Definitions
• Directed graph

• Directed edges

• Undirected graph

• Undirected edges

© Department of Computer Science UMD

Graph Definitions
• Weighted graph

• Weight (cost) associated with each edge

© Department of Computer Science UMD

Graph Definitions
• Path

• Sequence of nodes n1, n2, … nk

• Edge exists between each pair of nodes ni , ni+1

• Example

• A, B, C is a path

• A, E, D is not a path

© Department of Computer Science UMD

Graph Definitions
• Cycle

• Path that ends back at starting node

• Example

• A, E, A

• A, B, C, D, E, A

• Simple path

• No cycles in path

• Acyclic graph

• No cycles in graph

• What is an example?

© Department of Computer Science UMD

Graph Definitions
• Connected Graph

• Every node in the graph is reachable from every other node

in the graph

• Unconnected graph

• Graph that has several disjoint components

Unconnected graph

© Department of Computer Science UMD

Graph Operations
• Traversal (search)

• Visit each node in graph exactly once

• Usually perform computation at each node

• Two approaches

• Breadth first search (BFS)

• Depth first search (DFS)

© Department of Computer Science UMD

Traversals Orders
• Order of successors

• For tree

• Can order children nodes from left to right

• For graph

• Left to right doesn’t make much sense

• Each node just has a set of successors and predecessors;

there is no order among edges

• For breadth first search

• Visit all nodes at distance k from starting point

• Before visiting any nodes at (minimum) distance k+1 from

starting point

© Department of Computer Science UMD

Breadth-first Search (BFS)
• Approach

• Visit all neighbors of node

first

• View as series of expanding

circles

• Keep list of nodes to visit in

queue

• Example traversal

1. n

2. a, c, b

3. e, g, h, i, j

4. d, f

© Department of Computer Science UMD

Breadth-first Tree Traversal
• Example traversals starting from 1

1

2 3

4 5 6

7

1

3 2

6 5 4

7

1

2 3

5 6 4

7

Left to right Right to left Random

© Department of Computer Science UMD

Depth-first Search (DFS)
• Approach

• Visit all nodes on path first

• Backtrack when path ends

• Keep list of nodes to visit in a stack

• Similar to process in maze without exit

• Example traversal

1. N

2. A

3. B, C, D, …

4. F…

© Department of Computer Science UMD

Depth-first Tree Traversal
• Example traversals from 1 (preorder)

1

2 6

3 5 7

4

1

4 2

6 5 3

7

1

2 6

4 3 7

5

Left to right Right to left Random

© Department of Computer Science UMD

Traversal Algorithms
• Issue

• How to avoid revisiting nodes

• Infinite loop if cycles present

• Approaches

• Record set of visited nodes

• Mark nodes as visited

1

2 3

4 ? 5

?

© Department of Computer Science UMD

Traversal – Avoid Revisiting Nodes
• Record set of visited nodes

• Initialize { Visited } to empty set

• Add to { Visited } as nodes are visited

• Skip nodes already in { Visited }

1

2 3

4

V = 

1

2 3

4

V = { 1 }

1

2 3

4

V = { 1, 2 }

© Department of Computer Science UMD

Traversal – Avoid Revisiting Nodes
• Mark nodes as visited

• Initialize tag on all nodes (to False)

• Set tag (to True) as node is visited

• Skip nodes with tag = True

F

F F

F

T

F F

F

T

T F

F

© Department of Computer Science UMD

Traversal Algorithm Using Sets
{ Visited } = 

{ Discovered } = { 1st node }

while ({ Discovered }  )

take node X out of { Discovered }

if X not in { Visited }

add X to { Visited }

process X (e.g., print)

for each successor Y of X

if (Y is not in { Visited })

add Y to { Discovered }

© Department of Computer Science UMD

BFS vs. DFS Traversal
• Order nodes taken out of { Discovered } key

• Implement { Discovered } as Queue

• First in, first out

• Traverse nodes breadth first

• Implement { Discovered } as Stack

• First in, last out

• Traverse nodes depth first

© Department of Computer Science UMD

Example
• Let’s do a BFS/DFS using the following graph (start vertex C)

• Which Java class can help us implement BFS/DFS?

C

D
B

EA

© Department of Computer Science UMD

Recursive Graph Traversal
• Can traverse graph using recursive algorithm

• Recursively visit successors

• Approach

Visit (X)

for each successor Y of X

Visit (Y)

• Implicit call stack & backtracking

• Results in depth-first traversal

© Department of Computer Science UMD

