
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Synchronization in Java II

Department of Computer Science

University of Maryland, College Park

Data Race
• Definition

• Concurrent accesses to same shared variable, where at least one

access is a write

• Properties

• Order of accesses may change result of program

• May cause intermittent errors, very hard to debug

• Example

public class DataRace extends Thread {

static int x; // shared variable x causing data race

public void run() { x = x + 1; } // access to x

}

© Department of Computer Science UMD

Synchronized Objects in Java
• Every Java object has a lock

• A lock can be held by only one thread at a time

• A thread acquires the lock by using synchronized

• Acquiring lock example

Object x = new Object(); // We can use any object as “locking object”

synchronized(x) { // Thread tries to acquire lock on x on entry

... // Thread holds lock on x in the block

} // Thread releases lock on x on exit

• When synchronized is executed

• Thread will be able to acquire the lock if no other thread has it

• Thread will block if another thread has the lock (enforces mutual exclusion)

• Lock is released when block terminates

• End of synchronized block is reached

• Exit block due to return, continue, break

• Exception thrown

© Department of Computer Science UMD

Example (Account)
• We have a bank account shared by two kinds of buyers (Excessive

and Normal)

• We can perform deposits, withdrawals, and balance requests for an

account

• Critical section - account access

• Solution - Example: lockObjInAccount

• We are using lockObj to protect access to the Account object

• What would happen if we define lockObj as static? Can we have

multiple accounts?

• Solution - Example: usingThisInAccount

• We don’t need to define an object to protect the Account object as

an account object already has a lock

© Department of Computer Science UMD

Synchronized Methods In Java
• If the entire body of a method is synchronized using the current

object lock (e.g., synchronized(this)) we can rewrite the code by
using the synchronized keyword on the method prototype

• Example

synchronized foo() { …code… }

// shorthand notation for

foo() {

synchronized (this) { …code… } // this is reference curr object

}

• Example: synchronizedMethods

• Defining a method as synchronized provides mutual exclusion for the
entire body of the method

• Only define a method as synchronized if the entire body of the method
represents the critical section; otherwise you might limit concurrency

© Department of Computer Science UMD

Synchronization Issues
• Use same lock to provide mutual exclusion

• Ensure atomic transactions

• Avoiding deadlock

© Department of Computer Science UMD

Issue #1 - Using Same Lock
• Potential problem

• Mutual exclusion depends on threads acquiring the same lock

• No synchronization will take place if threads use different locks

• Example

foo() {

Object o = new Object(); // Different object (o) per thread

synchronized(o) {

… // Potential data race

}

}

© Department of Computer Science UMD

Locks in Java
• Single lock for all threads (mutual exclusion)

• Separate locks for each thread (no synchronization)

© Department of Computer Science UMD

Lock Example - Incorrect Version
public class DataRace extends Thread {

static int common = 0;

public void run() {

Object o = new Object(); // Different o per thread

synchronized(o) {

int local = common; // Data race

local = local + 1;

common = local;

}

}

public static void main(String[] args) {

…

}

}

© Department of Computer Science UMD

Issue #2 - Atomic Transactions
• Potential problem

• Sequence of actions representing the critical section must be

performed as single atomic transaction to avoid a data race

• We need to ensure lock is held for the duration of the execution of the

critical section

• We cannot perform part of the instructions representing the critical section,

release the lock, acquire the lock again, and complete the rest of the

instructions

• Example
synchronized(o) {

int local = common; // All 3 statements must be executed

local = local + 1; // together while holding the lock

common = local;

}

© Department of Computer Science UMD

Lock Example - Incorrect Version
public class DataRace extends Thread {

static int common = 0;

static Object o = new Object(); // All threads use o’s lock

public void run() {

int local;

synchronized(o) {

local = common;

} // Transaction is not atomic

synchronized(o) { // Data race may occur

local = local + 1; // even using locks

common = local;

}

}

}

© Department of Computer Science UMD

Issue 3- Avoiding Deadlock
• Potential problem

• Threads holding lock may be unable to obtain lock held by other

thread, and vice versa

• Thread holding lock may be waiting for action performed by

other thread waiting for lock

• Program is unable to continue execution (deadlock)

© Department of Computer Science UMD

Deadlock Example 1
Object a = new Object()

Object b = new Object()

Thread1() { Thread2() {

synchronized(a) { synchronized(b) {

synchronized(b) { synchronized(a) {

… …

} }

} }

} }

// Thread1 holds lock for a, waits for b

// Thread2 holds lock for b, waits for a

© Department of Computer Science UMD

Deadlock Example 2
void swap(Object a, Object b) {

Object local;

synchronized(a) {

synchronized(b) {

local = a; a = b; b = local;

}

}

}

Thread1() { swap(a, b); } // Holds lock for a, waits for b

Thread2() { swap(b, a); } // Holds lock for b, waits for a

© Department of Computer Science UMD

Deadlock Example 3
• When two friends bow to each other at the same time
• https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html

© Department of Computer Science UMD

https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html

Deadlock
• Avoiding deadlock

• In general, avoid holding lock for a long time

• Especially avoid trying to hold two locks

• May wait a long time trying to get 2nd lock

© Department of Computer Science UMD

Thread-safe
• Thread-safe - Code is considered thread-safe if it works correctly when

executed by multiple threads simultaneously

• Example: ArrayList is not thread-safe

From Java API: “Note that this implementation is not synchronized. If

multiple threads access an ArrayList instance concurrently, and at least

one of the threads modifies the list structurally, it must be synchronized

externally.”

© Department of Computer Science UMD

Miscellaneous
• The lock we have described is known as intrinsic lock or monitor lock

• API specification often refers to this entity simply as a "monitor“

• A thread can acquire a lock it already owns (it will not block)

• Reentrant synchronization

• For a static synchronized method which lock is used?

• Thread acquires the intrinsic lock for the Class object associated

with the class

• Reference:

• http://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

© Department of Computer Science UMD

http://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

Designing Solutions
• You must be careful while designing solutions involving threads

• Make sure you are not limiting concurrency

• Correctly identify what represents the critical section

• Avoid unnecessary synchronization

• Test

• Make sure you test your code to identify performance issues and

data races

© Department of Computer Science UMD

Synchronization Summary
• Needed in multithreaded programs

• Can prevents data races

• Java objects support synchronization

• Many other tricky issues

• To be discussed in future courses

© Department of Computer Science UMD

