CMSC 132:
OBJECT-ORIENTED PROGRAMMING Il

«ersir, Single Source Shortest Path Algorithm

53 X O
18
“ éQ Department of Computer Science

56
4RYLB

University of Maryland, College Park

© Department of Computer Science UMD

Single Source Shortest Path

- Common graph problems
- Problem1 - Find path from X to Y with lowest edge weight

- Problem2 - Find path from X to any Y with lowest edge weight
- This is not the same as the Traveling Salesman Problem
- Single Source Shortest Path - Useful for many applications

- Shortest route in map (Similar to GPS)

- Lowest cost trip

- Most efficient internet route
- Dijkstra’s algorithm

- Finds path from X to any Y with lowest edge weight

- Computes shortest path from X to any other node, but not the shortest path
from any node to any other node

© Department of Computer Science UMD

Shortest Path — Dijkstra’s Algorithm

- Maintain
- Nodes with known shortest path from start > S
- Cost of shortest path to node K from start - C[K]
- Only for paths through nodes in S
- Predecessor to K on shortest path = P[K]
- Updated whenever new (lower) C[K] discovered
- Remembers actual path with lowest cost

© Department of Computer Science UMD

Shortest Path — Intuition for Dijkstra’s

- At each step in the
algorithm

- Shortest paths are
known for nodes in S

- Store in C[K] length of
shortest path to node K
(for all paths through
nodesin{S})

- Add to { S } next lowest
Source
cost node hda e

© Department of Computer Science UMD

Shortest Path — Intuition for Djikstra’s

- Update distance to J after
adding node K S
- Previous shortest path to K
already in C[K]
- Possibly shorter path to J by
going through node K
- Compare C[J] with C[K | +
weight of (K,J), update C[J] if
needed

Shortest Path — Dijkstra’s Algorithm

S=¢
P[] = none for all nodes
Clstart] = 0, C[] = « for all other nodes
while (nodes can be added to S)
find node K not in S with smallest C[K]
add Kto S
for each node J not in S adjacent to K
If (C[K] + cost of (K,J) < C[J])
C[J] = CIK] + cost of (K,J)
P[J] =K

Optimal solution computed with greedy algorithm

Dijkstra’'s Shortest Path Example

© Department of Computer Science UMD

- Initial state
-S=¢

C P
1 0 none
2 0 none
3 00 none
4| oo none
5 00 none

Dijkstra’s Shortest Path Example

- Find shortest paths starting from node 1

S =1

C P
1| O | none
2| oo | none
3| oo | none
4| oo | none
5| oo | none

© Department of Computer Science UMD

Dijikstra’s Shortest Path Example

- Update C[K] for all neighbors of 1 notin{S }
- S = { 1 }

C P
1 0 none
2| 5 1
3| 8 1
4| oo none
5| oo none
C[2]:min(oo,C[1]+(12)): |n(oo,0+5):5
C[3] =min (o, C[1] +(1,3)) =min (0, 0+ 8) =8

© Department of Computer Science UMD

Dijikstra’s Shortest Path Example

- Find node K with smallest C[K] and add to S
-S ={1,2}

8|8 |@|un|o|O

g W[IN|PF

© Department of Computer Science UMD

Dijkstra’'s Shortest Path Example

- Update C[K] for all neighbors of 2 notin S

-S={12}

C P
1| O |none
21 S 1
3| 6 2
4| 15 2
5| o |none

C[3] = min (8, C[2] + (2,3).)":}nin (8,5+1)=6
C[4] = min (o0, C[2] + (2,4)) = min (o, 5 + 10) = 15

© Department of Computer Science UMD

Dijkstra’'s Shortest Path Example

- Find node K with smallest C[K] and add to S
-S ={1,2,3}

Ol W|IDN|PF
o)
N

© Department of Computer Science UMD

Dijkstra’'s Shortest Path Example

- Update C[K] for all neighbors of 3 notin S

.{S}=1,2,3
cC | P
1 O |none
2| 5 | 1
3 6 2
41 9 3
5 oo | hone

C[4] = min (15, C[3] + (3,4)) = min (15,6 + 3) = 9

© Department of Computer Science UMD

Dijkstra’'s Shortest Path Example

- Find node K with smallest C[K] and add to S
-{S}=123,4

C P
1| O |none
21 S 1
3| 6 2
41 9 3
5| o |hone

© Department of Computer Science UMD

Dijkstra’'s Shortest Path Example

- Update C[K] for all neighbors of 4 notin S
-S={1,23,4}

C P
1| O |none
21 S 1
3| 6 2
41 9 3
5| 18 4

C[5] =min (0, C[4] +(4,5)) =min (0,9 +9) =18

Dijkstra’'s Shortest Path Example

© Department of Computer Science UMD

C P
1| O |none
21 S 1
3| 6 2
41 9 3
5| 18 4

- Find node K with smallest C[K] and add to S
-S5={1,2,3,4,5}

.....

.....

© Department of Computer Science UMD

Dijkstra’'s Shortest Path Example

- All nodes in S, algorithm is finished
-S5={1,2,3,4,5}

C P
1| O |none
21 S 1
3| 6 2
41 9 3
5| 18 4

© Department of Computer Science UMD

Dijkstra’'s Shortest Path Exarr

- Find shortest path from start to K

- Start at K
- Trace back predecessors in P[]

none

- Example paths (in reverse)

- 2-1

3521
4 -53->2->1

Ooloo|lvo|o|l O

a|l W IN|PF

*5>4-53-52->1

18

Al W] N P

© Department of Computer Science UMD

About Dijkstra’s Algorithm

- You always select the next node with the lowest cost
- Not necessarily adjacent to the last one processed

- What if while processing a node, one of the adjacent nodes belongs to
the set S?

- What if you have a value not reachable from the start vertex? What is the
cost?

- What if there is a node with an edge pointing to itself?

- What if there are two nodes with the same cost? Which one is selected
next?

- What happens if the edge costs are negative?
- Use Bellman-Ford algorithm

- You can stop Dijkstra’s once you have computed the path/cost to the
node of interest

- Running the algorithm using one vertex (start) does not generate
the shortest paths from any vertex to any other vertex.

- Big O using min-priority queue - O(|E| + |V]| log |V])

© Department of Computer Science UMD

Typical Problem for Exam/Quiz

Apply Dykstra s algonthm using B as the starting (source)node. Indicatethe cost and predecessor for
eachnodeinthe graph afterprocessing 1,2 and 3 nodes (B and 2 othernodes)have been added to the
set of processed nodes (Remeamber to update theappropriate table entries after processing the 3% node
added). Anempty table entry implies an nfinite cost orno predecessor. Note: points will be deducted
if vou simply fill in the entire table instead showing the table ai the first three sfeps.

Answer:
Afterprocessing 1 node:
Node A B C D E F
Cost 2 [¥] g 7
Predecessor B B E
Afterprocessing 2 nodes:
Node A B c D E F
Cost 2 0 5 22 7
Predecessor B A A B
Afterprocessing 3 nodes:
Node A B C D E F
Cost 2 0 11 5 22 7
Predecessor B D A A B

© Department of Computer Science UMD

Java Priority Queue

- Java Priority Queue
- https://docs.oracle.com/en/javal/javase/l11/docs/api/java.basel/javalutil/PriorityQueue.html

- Example: PriorityQueueCode.zip

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html

