
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Single Source Shortest Path Algorithm

Department of Computer Science

University of Maryland, College Park

Single Source Shortest Path
• Common graph problems

• Problem1 → Find path from X to Y with lowest edge weight

• Problem2 → Find path from X to any Y with lowest edge weight

• This is not the same as the Traveling Salesman Problem

• Single Source Shortest Path - Useful for many applications

• Shortest route in map (Similar to GPS)

• Lowest cost trip

• Most efficient internet route

• Dijkstra’s algorithm

• Finds path from X to any Y with lowest edge weight

• Computes shortest path from X to any other node, but not the shortest path

from any node to any other node

© Department of Computer Science UMD

Shortest Path – Dijkstra’s Algorithm
• Maintain

• Nodes with known shortest path from start → S

• Cost of shortest path to node K from start → C[K]

• Only for paths through nodes in S

• Predecessor to K on shortest path  P[K]

• Updated whenever new (lower) C[K] discovered

• Remembers actual path with lowest cost

© Department of Computer Science UMD

Shortest Path – Intuition for Dijkstra’s
• At each step in the

algorithm

• Shortest paths are

known for nodes in S

• Store in C[K] length of

shortest path to node K

(for all paths through

nodes in { S })

• Add to { S } next lowest

cost node

S

© Department of Computer Science UMD

Shortest Path – Intuition for Djikstra’s
• Update distance to J after

adding node K

• Previous shortest path to K

already in C[K]

• Possibly shorter path to J by

going through node K

• Compare C[J] with C[K] +

weight of (K,J), update C[J] if

needed

© Department of Computer Science UMD

Shortest Path – Dijkstra’s Algorithm
S = 

P[] = none for all nodes

C[start] = 0, C[] =  for all other nodes

while (nodes can be added to S)

find node K not in S with smallest C[K]

add K to S

for each node J not in S adjacent to K

if (C[K] + cost of (K,J) < C[J])

C[J] = C[K] + cost of (K,J)

P[J] = K

Optimal solution computed with greedy algorithm

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Initial state

• S = 

C P

1 0 none

2  none

3  none

4  none

5  none

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Find shortest paths starting from node 1

• S = 1

C P

1 0 none

2  none

3  none

4  none

5  none

© Department of Computer Science UMD

Djikstra’s Shortest Path Example
• Update C[K] for all neighbors of 1 not in { S }

• S = { 1 }

C[2] = min ( , C[1] + (1,2)) = min ( , 0 + 5) = 5
C[3] = min ( , C[1] + (1,3)) = min ( , 0 + 8) = 8

C P

1 0 none

2 5 1

3 8 1

4  none

5  none

© Department of Computer Science UMD

Djikstra’s Shortest Path Example
• Find node K with smallest C[K] and add to S

• S = { 1, 2 }

C P

1 0 none

2 5 1

3 8 1

4  none

5  none

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Update C[K] for all neighbors of 2 not in S

• S = { 1, 2 }

C[3] = min (8 , C[2] + (2,3)) = min (8 , 5 + 1) = 6
C[4] = min ( , C[2] + (2,4)) = min ( , 5 + 10) = 15

C P

1 0 none

2 5 1

3 6 2

4 15 2

5  none

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Find node K with smallest C[K] and add to S

• S = { 1, 2, 3 }

C P

1 0 none

2 5 1

3 6 2

4 15 2

5  none

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Update C[K] for all neighbors of 3 not in S

• { S } = 1, 2, 3

C[4] = min (15 , C[3] + (3,4)) = min (15 , 6 + 3) = 9

C P

1 0 none

2 5 1

3 6 2

4 9 3

5  none

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Find node K with smallest C[K] and add to S

• { S } = 1, 2, 3, 4

C P

1 0 none

2 5 1

3 6 2

4 9 3

5  none

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Update C[K] for all neighbors of 4 not in S

• S = { 1, 2, 3, 4 }

C[5] = min ( , C[4] + (4,5)) = min ( , 9 + 9) = 18

C P

1 0 none

2 5 1

3 6 2

4 9 3

5 18 4

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Find node K with smallest C[K] and add to S

• S = { 1, 2, 3, 4, 5 }

C P

1 0 none

2 5 1

3 6 2

4 9 3

5 18 4

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• All nodes in S, algorithm is finished

• S = { 1, 2, 3, 4, 5 }

C P

1 0 none

2 5 1

3 6 2

4 9 3

5 18 4

© Department of Computer Science UMD

Dijkstra’s Shortest Path Example
• Find shortest path from start to K

• Start at K

• Trace back predecessors in P[]

• Example paths (in reverse)

• 2 → 1

• 3 → 2 → 1

• 4 → 3 → 2 → 1

• 5 → 4 → 3 → 2 → 1

C P

1 0 none

2 5 1

3 6 2

4 9 3

5 18 4

© Department of Computer Science UMD

About Dijkstra’s Algorithm
• You always select the next node with the lowest cost

• Not necessarily adjacent to the last one processed

• What if while processing a node, one of the adjacent nodes belongs to
the set S?

• What if you have a value not reachable from the start vertex? What is the
cost?

• What if there is a node with an edge pointing to itself?

• What if there are two nodes with the same cost? Which one is selected
next?

• What happens if the edge costs are negative?

• Use Bellman-Ford algorithm

• You can stop Dijkstra’s once you have computed the path/cost to the
node of interest

• Running the algorithm using one vertex (start) does not generate
the shortest paths from any vertex to any other vertex.

• Big O using min-priority queue → O(|E| + |V| log |V|)

© Department of Computer Science UMD

Typical Problem for Exam/Quiz

© Department of Computer Science UMD

Java Priority Queue
• Java Priority Queue

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html

• Example: PriorityQueueCode.zip

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html

