CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Single Source Shortest Path Algorithm

Department of Computer Science
University of Maryland, College Park

Single Source Shortest Path

- Common graph problems
- Problem1 \rightarrow Find path from X to Y with lowest edge weight
- Problem2 \rightarrow Find path from X to any Y with lowest edge weight
- This is not the same as the Traveling Salesman Problem
- Single Source Shortest Path - Useful for many applications
- Shortest route in map (Similar to GPS)
- Lowest cost trip
- Most efficient internet route
- Dijkstra's algorithm
- Finds path from X to any Y with lowest edge weight
- Computes shortest path from X to any other node, but not the shortest path from any node to any other node

Shortest Path - Dijkstra's Algorithm

- Maintain
- Nodes with known shortest path from start \rightarrow S
- Cost of shortest path to node K from start \rightarrow C[K]
- Only for paths through nodes in S
- Predecessor to K on shortest path $\Rightarrow P[K]$
- Updated whenever new (lower) C[K] discovered
- Remembers actual path with lowest cost

Shortest Path - Intuition for Dijkstra's

- At each step in the algorithm
- Shortest paths are known for nodes in S
- Store in C[K] length of shortest path to node K (for all paths through nodes in $\{\mathrm{S}\}$)
- Add to \{ S \} next lowest cost node

Shortest Path - Intuition for Djikstra's

- Update distance to J after adding node K
- Previous shortest path to K already in C[K]
- Possibly shorter path to J by going through node K
- Compare C[J] with C[K] + weight of (K, J), update $\mathrm{C}[\mathrm{J}$] if needed

Shortest Path - Dijkstra's Algorithm

$S=\varnothing$
P[] = none for all nodes
C[start] $=0, C[]=\infty$ for all other nodes
while (nodes can be added to S) find node K not in S with smallest $\mathrm{C}[\mathrm{K}]$ add K to S
for each node J not in S adjacent to K

$$
\text { if } \begin{aligned}
& (\mathrm{C}[\mathrm{~K}]+\operatorname{cost} \text { of }(\mathrm{K}, \mathrm{~J})<\mathrm{C}[\mathrm{~J}]) \\
& \mathrm{C}[\mathrm{~J}]=\mathrm{C}[\mathrm{~K}]+\operatorname{cost} \text { of }(\mathrm{K}, \mathrm{~J}) \\
& \mathrm{P}[\mathrm{~J}]=\mathrm{K}
\end{aligned}
$$

Optimal solution computed with greedy algorithm

Dijkstra's Shortest Path Example

- Initial state
- $S=\varnothing$

	\mathbf{C}	P
$\mathbf{1}$	$\mathbf{0}$	none
$\mathbf{2}$	∞	none
3	∞	none
4	∞	none
$\mathbf{5}$	∞	none

Dijkstra's Shortest Path Example

- Find shortest paths starting from node 1
- $S=1$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	$\mathbf{0}$	none
$\mathbf{2}$	∞	none
3	∞	none
4	∞	none
$\mathbf{5}$	∞	none

Djikstra's Shortest Path Example

- Update $\mathrm{C}[\mathrm{K}]$ for all neighbors of 1 not in $\{\mathrm{S}$ \}
- $S=\{1\}$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	0	none
2	5	1
3	8	1
4	∞	none
5	∞	none

$C[2]=\min (\infty, C[1]+(1,2))=\min (\infty, 0+5)=5$
$C[3]=\min (\infty, C[1]+(1,3))=\min (\infty, 0+8)=8$

Djikstra's Shortest Path Example

- Find node K with smallest $\mathrm{C}[\mathrm{K}]$ and add to S
- $S=\{1,2\}$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	0	none
2	5	1
3	8	1
4	∞	none
5	∞	none

Dijkstra's Shortest Path Example

- Update $C[K]$ for all neighbors of 2 not in S
- $S=\{1,2\}$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	$\mathbf{0}$	none
$\mathbf{2}$	5	1
3	6	2
4	15	2
$\mathbf{5}$	∞	none

$C[3]=\min (8, C[2]+(2,3))=\min (8,5+1)=6$ $\mathrm{C}[4]=\min (\infty, \mathrm{C}[2]+(2,4))=\min (\infty, 5+10)=15$

Dijkstra's Shortest Path Example

- Find node K with smallest $\mathrm{C}[\mathrm{K}]$ and add to S
- $S=\{1,2,3\}$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	$\mathbf{0}$	none
2	5	1
3	6	2
4	15	2
5	∞	none

Dijkstra's Shortest Path Example

- Update C[K] for all neighbors of 3 not in S
- $\{S\}=1,2,3$

	\mathbf{C}	\mathbf{P}
1	0	none
2	5	1
3	6	2
4	9	3
5	∞	none

$C[4]=\min (15, C[3]+(3,4))=\min (15,6+3)=9$

Dijkstra's Shortest Path Example

- Find node K with smallest $\mathrm{C}[\mathrm{K}]$ and add to S
- $\{S\}=1,2,3,4$

	C	P
$\mathbf{1}$	0	none
2	5	1
3	6	2
4	9	3
5	∞	none

Dijkstra's Shortest Path Example

- Update C[K] for all neighbors of 4 not in S
- $S=\{1,2,3,4\}$

	C	P
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

$C[5]=\min (\infty, C[4]+(4,5))=\min (\infty, 9+9)=18$

Dijkstra's Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
- $S=\{1,2,3,4,5\}$

	C	P
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

Dijkstra's Shortest Path Example

- All nodes in S , algorithm is finished
- $S=\{1,2,3,4,5\}$

	\mathbf{C}	\mathbf{P}
$\mathbf{1}$	0	none
2	5	1
3	6	2
4	9	3
5	18	4

Dijkstra's Shortest Path Example

- Find shortest path from start to K
- Start at K
- Trace back predecessors in P[]
- Example paths (in reverse)
- $2 \rightarrow 1$
- $3 \rightarrow 2 \rightarrow 1$
- $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$
- $5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$

	C	P
1	0	none
2	5	1
3	6	2
4	9	3
5	18	4

About Dijkstra's Algorithm

- You always select the next node with the lowest cost
- Not necessarily adjacent to the last one processed
- What if while processing a node, one of the adjacent nodes belongs to the set S ?
- What if you have a value not reachable from the start vertex? What is the cost?
- What if there is a node with an edge pointing to itself?
- What if there are two nodes with the same cost? Which one is selected next?
- What happens if the edge costs are negative?
- Use Bellman-Ford algorithm
- You can stop Dijkstra's once you have computed the path/cost to the node of interest
- Running the algorithm using one vertex (start) does not generate the shortest paths from any vertex to any other vertex.
- Big O using min-priority queue $\rightarrow \mathbf{O}(|\mathrm{E}|+|\mathrm{V}| \log |\mathrm{V}|)$

Typical Problem for Exam/Quiz

Apply Dijkstra's algonithm usingB as the starting (source)node. Indicatethe cost and predecessor for each node in the graph after processing 1,2 and 3 nodes (\mathbf{B} and 2 other nodes) have been added to the set of processed nodes (Remember to update the appropriate table entries after processing the $3^{\text {rd }}$ node added). An empty table entry implies an infinite cost or no predecessor. Note:points will be deducted if you simply fill in the entire table instead showing the table at the first three steps.

Answer:

After processing 1 node:

Node	A	B	C	D	E	F
Cost	2	0		8		7
Predecessor	B			B		B

After processing 2 nodes:

Node	A	B	C	D	E	F
Cost	2	0		5	22	7
Predecessor	B			A	A	B

After processing 3 nodes:

Node	A	B	C	D	E	F
Cost	2	0	11	5	22	7
Predecessor	B		D	A	A	B

Java Priority Queue

- Java Priority Queue
- https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html
- Example: PriorityQueueCode.zip

