
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Graph Implementation

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Graph Implementation
• How do we represent a graph?

• Two components

• Component #1 - Data each node stores about the system (e.g., if each

node represents a computer, the number of users, memory capacity, etc.)

• Component #2 - How to represent each node and the adjacency

properties (neighbors) of each one

• For component #1 we could use a map where the key is the node’slabel and

data an object with the node properties

• For component #2 we could use

• Adjacency matrix

• 2D array of neighbors

• Adjacency list/set/map

• List/set/map of neighbors

• Which option for component #2 we use impacts efficiency/storage

• In this presentation we will discuss component #2.

© Department of Computer Science UMD

Adjacency Matrix
• Single two-dimensional array for entire graph

• Directed Graph

• Unweighted graph

• Matrix elements → boolean

• Weighted graph

• Matrix elements → values

• Let’s see an example of each

• Undirected Graph

• Let’s see an example for unweighted graph

• Let’s see an example for weighted graph

• For Undirected Graph

• Only upper/lower triangle matrix needed

• Since nj, nk implies nk, nj

0 1

2

© Department of Computer Science UMD

Adjacency List/Set/Map
• For each node, store neighbor information in a list, set, or map

• The main structure can be a list, set, or map

• Directed Graph

• Unweighted Graph

• List or set of neighbors

• Weighted Graph

• Each entry keeps track of neighbor and weight

• Easy to implement with maps

• Maps of Maps (using HashMaps for efficiency)

• Let’s see an example of each

• Undirected Graph

• Let’s see an example for unweighted graph

• Let’s see an example for weighted graph

0 1

2

© Department of Computer Science UMD

Additional Examples
• Examples

• Unweighted graph

• Weighted graph

node 1: {2, 3}

node 2: {1, 3, 4}

node 3: {1, 2, 4, 5}

node 4: {2, 3, 5}

node 5: {3, 4, 5}

node 1: {2=3.7, 3=5}

node 2: {1=3.7, 3=1, 4=10.2}

node 3: {1=5, 2=1, 4=8, 5=3}

node 4: {2=10.2, 3=8, 5=1.5}

node 5: {3=3, 4=1.5, 5=6}

© Department of Computer Science UMD

Graph Properties
• Graph Density

• Ratio edges to nodes (dense vs. sparse)

• For adjacency matrix many empty entries for large, sparse graph

• Adjacency Matrix

• Can find individual edge (a,b) quickly

• Examine entry in array edge[a, b]

• Constant time operation

• Adjacency list / set / map

• Can find all edges for node (a) quickly

• Iterate through collection of edges for node (a)

• On average E / N edges per node

© Department of Computer Science UMD

Complexity
• Average Complexity of Operations

• For graph with N nodes, E edges

Operation Adj Matrix Adj List Adj Set/Map

Find edge O(1) O(E/N) O(1)

Insert edge O(1) O(E/N) O(1)

Delete edge O(1) O(E/N) O(1)

Enumerate

edges for node

O(N) O(E/N) O(E/N)

© Department of Computer Science UMD

Choosing Graph Implementations
• Factors to Consider

• Graph density

• Graph algorithm

• Neighbor based

For each node X in graph

For each neighbor Y of X // adj list faster if sparse

doWork()

• Connection based

For each node X in …

For each node Y in …

if (X,Y) is an edge // adj matrix faster if dense

doWork()

© Department of Computer Science UMD

