CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Graph Implementation

Department of Computer Science
University of Maryland, College Park

Graph Implementation

- How do we represent a graph?
- Two components
- Component \#1 - Data each node stores about the system (e.g., if each node represents a computer, the number of users, memory capacity, etc.)
- Component \#2 - How to represent each node and the adjacency properties (neighbors) of each one
- For component \#1 we could use a map where the key is the node'slabel and data an object with the node properties
- For component \#2 we could use
- Adjacency matrix
- 2D array of neighbors
- Adjacency list/set/map
- List/set/map of neighbors
- Which option for component \#2 we use impacts efficiency/storage
- In this presentation we will discuss component \#2.

Adjacency Matrix

- Single two-dimensional array for entire graph
- Directed Graph
- Unweighted graph
- Matrix elements \rightarrow boolean
- Weighted graph
- Matrix elements \rightarrow values
- Let's see an example of each
- Undirected Graph

- Let's see an example for unweighted graph
- Let's see an example for weighted graph
- For Undirected Graph
- Only upper/lower triangle matrix needed
- Since n_{j}, n_{k} implies n_{k}, n_{j}

Adjacency List/Set/Map

- For each node, store neighbor information in a list, set, or map
- The main structure can be a list, set, or map
- Directed Graph
- Unweighted Graph
- List or set of neighbors
- Weighted Graph
- Each entry keeps track of neighbor and weight
- Easy to implement with maps

- Maps of Maps (using HashMaps for efficiency)
- Let's see an example of each
- Undirected Graph
- Let's see an example for unweighted graph
- Let's see an example for weighted graph

Additional Examples

- Examples
- Unweighted graph

```
node 1: {2, 3}
node 2: {1,3,4}
node 3: {1, 2, 4, 5}
node 4: {2, 3, 5}
node 5: {3, 4, 5}
```

- Weighted graph

```
node 1: {2=3.7, 3=5}
node 2: {1=3.7, 3=1,4=10.2}
node 3: {1=5, 2=1, 4=8,5=3}
node 4: {2=10.2, 3=8,5=1.5}
node 5: {3=3,4=1.5,5=6}
```


Graph Properties

- Graph Density
- Ratio edges to nodes (dense vs. sparse)
- For adjacency matrix many empty entries for large, sparse graph
- Adjacency Matrix
- Can find individual edge (a,b) quickly
- Examine entry in array edge[a, b]
- Constant time operation
- Adjacency list / set / map
- Can find all edges for node (a) quickly
- Iterate through collection of edges for node (a)
- On average E / N edges per node

Complexity

- Average Complexity of Operations
- For graph with N nodes, E edges

Operation	Adj Matrix	Adj List	Adj Set/Map
Find edge	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{E} / \mathrm{N})$	$\mathrm{O}(1)$
Insert edge	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{E} / \mathrm{N})$	$\mathrm{O}(1)$
Delete edge	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{E} / \mathrm{N})$	$\mathrm{O}(1)$
Enumerate edges for node	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{E} / \mathrm{N})$	$\mathrm{O}(\mathrm{E} / \mathrm{N})$

Choosing Graph Implementations

- Factors to Consider
- Graph density
- Graph algorithm
- Neighbor based

For each node X in graph
For each neighbor Y of $\mathrm{X} / /$ adj list faster if sparse doWork()

- Connection based

For each node X in ...
For each node Y in ...
if (X, Y) is an edge // adj matrix faster if dense doWork()

