
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Sorting

Department of Computer Science

University of Maryland, College Park

Sorting
• Goal

• Arrange elements in predetermined order

• Based on key for each element

• Derived from ability to compare two keys

• Properties

• Stable → relative order of equal keys unchanged

• Stable: 3, 1, 4, 3, 3, 2 → 1, 2, 3, 3, 3, 4

• Unstable: 3, 1, 4, 3, 3, 2 → 1, 2, 3, 3, 3, 4

• In-place → uses only constant additional space

• Internal → all data being sorted fits into main memory

• External → required when the data being sorted do not fit into main
memory

• Adaptive → Algorithm takes into account whether the data is sorted
or partially sorted

• Runs faster the more sorted the data is initially

• Most algorithms discussed in lecture are internal and based on arrays

© Department of Computer Science UMD

Type of Sorting Algorithms
• Comparison-based and Linear Algorithms

• Comparison-based Algorithms →Only uses pairwise key comparisons

• Linear Algorithms →Uses additional properties of keys

• Comparison-based

• Proven lower bound of Omega(n log(n))

• Examples

• O(n2) →Bubblesort, Selection sort, Insertion sort

• O(nlog(n)) → Treesort, Heapsort, Quicksort, Mergesort

• Linear Algorithms

• Counting sort

• Bucket (bin) sort

• Radix sort

© Department of Computer Science UMD

Bubble Sort
• Approach

• Iteratively sweep through shrinking portions of list

• Swap element x with its right neighbor if x is larger

• After each pass largest element placed at the bottom (lighter

elements bubble up)

• Performance

• O(n2) average / worst case

© Department of Computer Science UMD

Bubble Sort Example

7 2 8 5 4

2 7 8 5 4

2 7 8 5 4

2 7 5 8 4

2 7 5 4 8

2 7 5 4 8

2 5 7 4 8

2 5 4 7 8

2 7 5 4 8

2 5 4 7 8

2 4 5 7 8

2 5 4 7 8

2 4 5 7 8

2 4 5 7 8

Sweep 1 Sweep 2 Sweep 3 Sweep 4

© Department of Computer Science UMD

Bubble Sort Code
void bubbleSort(int[] a) {

int outer, inner;

for (outer = a.length - 1; outer > 0; outer--)

for (inner = 0; inner < outer; inner++)

if (a[inner] > a[inner + 1])

swap(a, inner, inner+1);

}

void swap(int a[], int x, int y) {

int temp = a[x];

a[x] = a[y];

a[y] = temp;

}

How can we improve it?

Swap with
right neighbor

if larger

© Department of Computer Science UMD

Selection Sort
• Approach

• Iteratively sweep through shrinking

portions of list

• Select smallest element found in each

sweep

• Swap smallest element with front of

current list

• Performance

• O(n2) average / worst case

7 2 8 5 4

2 7 8 5 4

2 4 8 5 7

2 4 5 8 7

2 4 5 7 8

© Department of Computer Science UMD

Selection Sort Code
void selectionSort(int[] a) {

int outer, inner, min;

for (outer = 0; outer < a.length - 1; outer++) {

min = outer;

for (inner = outer + 1; inner < a.length; inner++) {

if (a[inner] < a[min]) {

min = inner;

}

}

swap(a, outer, min);

}

}
Swap with smallest

element found

Sweep
through

array Find smallest
element

© Department of Computer Science UMD

Insertion Sort
• Similar to method used when sorting cards

• Although is O(n2) it is the preferred algorithm when data is

nearly sorted or when the size of the data to sort is small (due

to low overhead). For these reasons is often used in algorithms

like quicksort when the size of the data is small

• Has a simple implementation

• More efficient in practice than most simple quadratic algorithms

• It is adaptive

© Department of Computer Science UMD

Insertion Sort Code
void insertionSort(int[] a) {

for (int i = 1; i < a.length; i++) {

int j, temp = a[i];

for (j = i - 1; j >= 0 && temp < a[j]; j--) {

a[j + 1] = a[j];

}

a[j + 1] = temp;

}

}

© Department of Computer Science UMD

Tree Sort
• Approach

• Insert elements in binary search tree

• List elements using inorder traversal

• Performance

• Binary search tree

• O(n log(n)) average case

• O(n2) worst case

• Balanced binary search tree

• O(n log(n)) average / worst case

7

82

5

4

{ 7, 2, 8, 5, 4 }

Binary search tree

© Department of Computer Science UMD

Heap Sort
• Approach

• Insert elements in heap

• Remove smallest element in heap, repeat

• List elements in order of removal from heap

• Performance

• O(n log(n)) average / worst case

2

84

57

{ 7, 2, 8, 5, 4 }

Heap

© Department of Computer Science UMD

Quick Sort
• Approach

• Select pivot value (near median of list)

• Partition elements (into 2 lists) using pivot value

• Recursively sort both resulting lists

• Concatenate resulting lists

• For efficiency pivot needs to partition list evenly

• Performance

• O(n log(n)) average case

• O(n2) worst case

• Used by Arrays.sort

• Runs faster than mergesort in most cases

© Department of Computer Science UMD

Quick Sort Algorithm
1. If list below size K

• Sort w/ other algorithm

• e.g., insertion sort

2. Else pick pivot x and partition S into

• L elements < x

• E elements = x

• G elements > x

3. Quicksort L & G

4. Concatenate L, E & G

• If not sorting in place

x

x

L GE

x

© Department of Computer Science UMD

Quick Sort Example

7 2 8 5 4

2 5 4 7 8

5 42

4 5

2 4 5 7 8

2 4 5 7 8

4 52

4 5

Partition & Sort Result

© Department of Computer Science UMD

Quick Sort Code
void quickSort(int[] a, int x, int y) {

int pivotIndex;

if ((y – x) > 0) {

pivotIndex = partitionList(a, x, y);

quickSort(a, x, pivotIndex – 1);

quickSort(a, pivotIndex + 1, y);

}

}

int partitionList(int[] a, int first, int last) {

… // partitions list and returns index of pivot

}

© Department of Computer Science UMD

Quick Sort Code
int partitionList(int a[], int first, int last) {

int i, pivot, border;

pivot = a[first];

border = first;

for (i = first + 1; i <= last; i++) {

if (a[i] <= pivot) {

border++;

swap(a, border, i);

}

}

swap(a, first, border);

return border;

}

© Department of Computer Science UMD

Merge Sort
• Approach

1. Partition list of elements into 2 lists

2. Recursively sort both lists

3. Given 2 sorted lists, merge into 1 sorted list

• Examine head of both lists

• Move smaller to end of new list

• Performance

• O(n log(n)) average / worst case

• Used by Collections.sort

• External and internal sorting algorithm

• Often preferred for sorting a linked list

• Divide and conquer algorithm

• Uses additional memory to perform merge step (not in-place)

• Even though merge sort and quick sort are O(nlog(n)) algorithms, quick sort

is usually faster in practice and does not require additional memory

© Department of Computer Science UMD

Merge Example

2 4

7 5 8

2 7 4 5 8

2

7 4 5 8

2 4 5

7 8

2 4 5 7

8

2 4 5 7 8

© Department of Computer Science UMD

Merge Sort Example

7 2 8 5 4

7 2 8 5 4

27 8 5 4

Split Merge

45

2 4 5 7 8

2 7 4 5 8

27 8 4 5

45

© Department of Computer Science UMD

Merge Sort Code
void mergeSort(int[] a, int x, int y) {

int mid = (x + y) / 2;

if (x != y) {

mergeSort(a, x, mid);

mergeSort(a, mid + 1, y);

merge(a, x, y, mid);

}

}

void merge(int[] a, int x, int y, int mid) {

… // merges 2 adjacent sorted lists in array

}

Lower
end of
array

region
to be

sorted

Upper
end of
array

region
to be

sorted

© Department of Computer Science UMD

Merge Sort Code
void merge(int[] a, int x, int y, int mid) {

int j, size = y - x + 1, left = x, right = mid + 1;

int[] tmp = new int[a.length];

for (j = 0; j < size; j++)

if (left > mid)

tmp[j] = a[right++];

else

if (right > y || a[left] < a[right])

tmp[j] = a[left++];

else

tmp[j] = a[right++];

for (j = 0; j < size; j++)

a[x + j] = tmp[j];

}

© Department of Computer Science UMD

Radix Sort
• Does not compare array entries

• It is not suitable as a general-purpose sorting algorithm

• Approach

• Decomposes a key C into its components (C1, C2, … , Cn) and uses

each component to organize to which buckets keys are assigned

• For an integer we use the digits that make up the integer

• For a word we use the letters that make up the word

• Running time O(n), but it cannot sort all types of data

© Department of Computer Science UMD

Radix Sort (Example)
• B(i) - stands for Bucket for digit i

• Original - 122, 397, 220, 017, 512

• Important: Each bucket must retain the order in which it receives values

• Step 1: Distribute values into buckets according to rightmost digit
• 122, 397, 220, 017, 512

• B(0){220}, B(1){}, B(2){122, 512}, B(3){}, B(4){}, B(5){}, B(6){}, B(7){397, 017}, B(8){}, B(9){}

• 220, 122, 512, 397, 017

• Step 2: Distribute values into buckets according to the next (left) digit
• 220, 122, 512, 397, 017

• B(0){}, B(1){512, 017}, B(2){220, 122}, B(3){}, B(4){}, B(5){}, B(6){}, B(7){}, B(8){}, B(9){397}

• 512, 017, 220, 122, 397

• Step 3: Distribute values into buckets according to the leftmost digit
• 512, 017, 220, 122, 397

• B(0){017}, B(1){122}, B(2){220}, B(3){397}, B(4){}, B(5){512}, B(6){}, B7{}, B8{}, B9{}

• Sorted → 017, 122, 220, 397, 512

© Department of Computer Science UMD

Radix Sort Algorithm for Integer Array
• Reference: Data Structures & Abstractions with Java, 5th Edition, Carrano, Henry,

ISBN 9780134831695

• radixSort method

• Sorts array[first..last] of positive integers in ascending order where maxDigits is
the number of digits in the longest integer. Bucket can be a queue.

radixSort(array, first, last, maxDigits) {

for (i = 0 to maxDigits - 1) { // d iterations, processing of digits from right to left

Clear bucket[0], bucket[1], … , bucket[9]

for (index = first to last) { // n iterations, processing all elements of array

digit = digit i of a[index]

Place a[index] at end of bucket[digit]

}

// Completes a step

Place contents of bucket[0], bucket[1], … , bucket[9] into array a

}

}

• For d digits for each integer and array with n integers: O(d x n). As long as d is fixed
and much smaller than n radix sort is O(n)

• Radix sort disadvantages: number of buckets depends on the possible components
of a key (e.g., integers 10 buckets, words 26 buckets)

© Department of Computer Science UMD

Sorting Properties
Name Compari-

son Sort

Avg Case

Complexity

Worst Case

Complexity

In

Place

Can be

Stable

Bubble  O(n2) O(n2)  

Selection  O(n2) O(n2)  

Insertion  O(n2) O(n2)  

Tree  O(n log(n)) O(n2)

Heap  O(n log(n)) O(n log(n))

Quick  O(n log(n)) O(n2) 

Merge  O(n log(n)) O(n log(n)) 

Radix O(n) O(n) 

© Department of Computer Science UMD

Links
• Sorting Algorithms Animations

• https://www.toptal.com/developers/sorting-algorithms/

• https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

• President and Sorting

• http://www.youtube.com/watch?v=k4RRi_ntQc8

• Ineffective Sorts

• http://xkcd.com/1185/

• What different sorting algorithms sound like

• http://www.youtube.com/watch?v=t8g-iYGHpEA

• Big-O Complexity for Array Sorting Algorithms

• http://bigocheatsheet.com/

© Department of Computer Science UMD

https://www.toptal.com/developers/sorting-algorithms/
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
http://www.youtube.com/watch?v=k4RRi_ntQc8
http://xkcd.com/1185/
http://www.youtube.com/watch?v=t8g-iYGHpEA
http://bigocheatsheet.com/

