CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Algorithm Strategies

Department of Computer Science University of Maryland, College Park

General Concepts

- Algorithm strategy
 - Approach to solving a problem
 - May combine several approaches
- Algorithm structure
 - Iterative \rightarrow execute action in loop
 - Recursive \rightarrow reapply action to subproblem(s)
- Problem type

Problem Type

- Satisfying
 - Find any satisfactory solution
 - Example \rightarrow Find path from A to E

Optimization

- Find best solution (vs. cost metric)
- Example \rightarrow Find shortest path from A to E

Some Algorithm Strategies

- Recursive algorithms
- Backtracking algorithms
- Divide and conquer algorithms
- Dynamic programming algorithms
- Greedy algorithms
- Brute force algorithms
- Branch and bound algorithms
- Heuristic algorithms

Recursive Algorithm

- Based on reapplying algorithm to subproblem
- Approach
 - 1. Solves base case(s) directly
 - 2. Recurs with a simpler subproblem
 - 3. May need to combine solution(s) to subproblems

Backtracking Algorithm

- Based on depth-first recursive search
- Approach
 - 1. Tests whether solution has been found
 - 2. If found solution, return it
 - 3. Else for each choice that can be made
 - a. Make that choice
 - b. Recur
 - c. If recursion returns a solution, return it
 - 4. If no choices remain, return failure
- Tree of alternatives \rightarrow search tree

Backtracking Algorithm - Reachability

- Find path in graph from A to F
 - 1. Start with currentNode = A
 - 2. If currentNode has edge to F, return path
 - 3. Else select neighbor node X for currentNode
 - Recursively find path from X to F
 - If path found, return path
 - Else repeat for different X
 - Return false if no path from any neighbor X

Backtracking Algorithm – Path Finding

Backtracking Algorithm – Map Coloring

- Color a map using **four** colors so adjacent regions do not share the same color
- Coloring map of countries
 - If all countries have been colored return success
 - Else for each color c of four colors and country n
 - If country n is not adjacent to a country that has been colored c
 - Color country n with color c
 - Recursively color country n+1
 - If successful, return success
 - Return failure
- Map from Wikipedia
 - <u>https://en.wikipedia.org/wiki/Four_color_theorem#/media/File:Map_of_Unit</u>
 <u>ed_States_vivid_colors_shown.png</u>

Divide and Conquer

- Based on dividing problem into subproblems
- Approach
 - 1. Divide problem into smaller subproblems
 - a. Subproblems must be of same type
 - b. Subproblems do not need to overlap
 - 2. Solve each subproblem recursively
 - 3. Combine solutions to solve original problem
- Usually contains two or more recursive calls

Divide and Conquer – Sorting

Quicksort

- Partition array into two parts around pivot
- Recursively quicksort each part of array
- Concatenate solutions

Mergesort

- Partition array into two parts
- Recursively mergesort each half
- Merge two sorted arrays into single sorted array

Dynamic Programming Algorithm

- Based on remembering past results
- Approach
 - 1. Divide problem into smaller subproblems
 - Subproblems must be of same type
 - Subproblems must overlap
 - 2. Solve each subproblem recursively
 - May simply look up solution (if previously solved)
 - 3. Combine solutions to solve original problem
 - 4. Store solution to problem
- Generally applied to optimization problems

Fibonacci Algorithm

- Fibonacci numbers
 - fibonacci(0) = 1
 - fibonacci(1) = 1
 - fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- Recursive algorithm to calculate fibonacci(n)
 - If n is 0 or 1, return 1
 - Else compute fibonacci(n-1) and fibonacci(n-2)
 - Return their sum
- Simple algorithm \rightarrow exponential time O(2ⁿ)

Dynamic Programming – Fibonacci

- Dynamic programming version of fibonacci(n)
 - If n is 0 or 1, return 1
 - Else solve fibonacci(n-1) and fibonacci(n-2)
 - Look up value if previously computed
 - Else recursively compute
 - Find their sum and store
 - Return result
- Dynamic programming algorithm \rightarrow O(n) time
 - Since solving fibonacci(n-2) is just looking up value

Dynamic Programming – Shortest Path

Djikstra's Shortest Path Algorithm

- S = Ø
- $\mathbf{C}[\mathsf{X}] = \mathbf{0}$
- $C[Y] = \infty$ for all other nodes
- while (not all nodes in S)
 - find node K not in S with smallest C[K]
 - add K to S
 - for each node M not in S adjacent to K
 - C[M] = min (C[M], C[K] + cost of (K,M))

Greedy Algorithm

- Based on trying best current (local) choice
- Approach
 - At each step of algorithm
 - Choose best local solution
- Avoid backtracking, exponential time O(2ⁿ)
- Hope local optimum lead to global optimum
- Example: Coin System
 - Coins 30 20 15 1
 - Find minimum number of coins for 40
 - Greedy algorithm fails

<u>Greedy Algorithm – Shortest Path</u>

- Example (Shortest Path from A to E)
 - Choose lowest-cost neighbor

Does not yield overall (global) shortest path

Greedy Algorithm – MST Kruskal's Minimal Spanning Tree Algorithm sort edges by weight (from least to most) tree = \emptyset for each edge (X,Y) in order if it does not create a cycle add (X,Y) to tree stop when tree has N–1 edges

Picks best local solution at each step

Brute Force Algorithm

- Based on trying all possible solutions
- Approach
 - Generate and evaluate possible solutions until
 - Satisfactory solution is found
 - Best solution is found (if can be determined)
 - All possible solutions found
 - Return best solution
 - Return failure if no satisfactory solution
- Generally, most expensive approach

Brute Force Algorithm – Shortest Path

• Examines all paths in the graph

Brute Force Algorithm – TSP

- Traveling Salesman Problem (TSP)
 - Given weighted undirected graph (map of cities)
 - Find lowest cost path visiting all nodes (cities) once
 - No known polynomial-time general solution
- Brute force approach
 - Find all possible paths using recursive backtracking
 - Calculate cost of each path
 - Return lowest cost path
 - Complexity O(n!)

Branch and Bound Algorithm

- Based on limiting search using current solution
- Approach
 - Track best current solution found
 - Eliminate (prune) partial solutions that can not improve upon best current solution
- Reduces amount of backtracking
 - Not guaranteed to avoid exponential time O(2ⁿ)

Branch & Bound Alg. – Shortest Path

- Starting with $A \rightarrow B \rightarrow E$
- Pruned paths beginning with A \rightarrow B \rightarrow C & A \rightarrow D

Branch and Bound – TSP

- Branch and bound algorithm for TSP
 - Find possible paths using recursive backtracking
 - Track cost of best current solution found
 - Stop searching path if cost > best current solution
 - Return lowest cost path
- If good solution found early, can reduce search
- May still require exponential time O(2ⁿ)

Heuristic Algorithm

- Based on trying to guide search for solution
- Heuristic \Rightarrow "rule of thumb"
- Approach
 - Generate and evaluate possible solutions
 - Using "rule of thumb"
 - Stop if satisfactory solution is found
- Can reduce complexity
- Not guaranteed to yield best solution

Heuristic – Shortest Path

- Example (From A to E)
 - Try only edges with cost < 5

• Worked...in this case

Heuristic Algorithm – TSP

- Heuristic algorithm for TSP
 - Find possible paths using recursive backtracking
 - Search 2 lowest cost edges at each node first
 - Calculate cost of each path
 - Return lowest cost path from first 100 solutions
- Not guaranteed to find best solution
- Heuristics used frequently in real applications

Summary

- Wide range of strategies
- Choice depends on
 - Properties of problem
 - Expected problem size
 - Available resources