
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Effective Java

Department of Computer Science

University of Maryland, College Park

Effective Java Textbook
• Title

• Most recent edition: Third Edition

• Author

• Joshua Bloch

• Contents

• Learn to use Java language and its libraries more

effectively

• Patterns and idioms to emulate

• Pitfalls to avoid

© Department of Computer Science UMD

What's In A Name?
public class Name {

private String myName;

public Name(String n) { myName = n; }

public boolean equals(Object o) {

if (!(o instanceof Name)) return false;

Name n = (Name)o;

return myName.equals(n.myName);

}

public static void main(String[] args) {

Set s = new HashSet();

s.add(new Name("Donald"));

System.out.println(

s.contains(new Name("Donald")));

} }

Output

1. True

2. False

3. It Varies

Name class

violates Java

hashCode()

contract.

If you override

equals(), must

also override

hashCode()!

© Department of Computer Science UMD

You're Such A Character
public class Trivial {

public static void main(String args[]) {

System.out.print("H" + "a");

System.out.print('H' + 'a');

}

}

Output
1. Ha

2. HaHa

3. Neither

Prints Ha169

'H' + 'a' evaluated as int,

then converted to String!

Use string concatenation

(+) with care. At least one

operand must be a String

© Department of Computer Science UMD

Time For A Change
• Problem

• If you pay $2.00 for a gasket that costs $1.10, how much change do

you get?

public class Change {

public static void main(String args[]) {

System.out.println(2.00 - 1.10);

}

}

Output
1. 0.9

2. 0.90

3. Neither

Prints 0.8999999999999999. Decimal

values can’t be represented exactly by

float or double

Avoid float or double where exact

answers are required. Use BigDecimal,

int, or long instead

© Department of Computer Science UMD

Classes and Interfaces
• Minimize the accessibility of classes and members

• Favor immutability

• Favor composition over inheritance

• Prefer interfaces to abstract classes

• Always override toString

• Makes your class more pleasant to use and makes

systems using the class easier to debug

© Department of Computer Science UMD

Classes and Interfaces
• Consider implementing Comparable for a class

• You class will interoperate with all of the many generic

algorithms and collection implementations available

• A file should store a single top-level class

• You can have multiple top level class if only one (or

none) are public

• Prefer lambdas to anonymous classes

• Omit the types of lambda parameters unless their

presence improves program’s clarity

• Use a standard functional interfaces when possible

(instead of a purpose-built one)

© Department of Computer Science UMD

Methods
• Check parameters for validity

• Make defensive copies when needed (more about this

topic later on)

• Use overloading judiciously

• Return zero-length arrays, not nulls

• Write doc comments for all exposed API elements

• Prefer alternatives to Java Serialization

• Other mechanisms exist that avoid the dangers

associated with Java serialization

© Department of Computer Science UMD

General Programming
• Minimize the scope of local variables

• Declare them close to where they are used

• Prefer for-each loops to traditional for loops

• For loops over while loops if the iteration variable will not be

used after the loop is over

• Know and use the libraries

• Every programmer should be familiar with java.lang, java.util, java.io

© Department of Computer Science UMD

General Programming
• Prefer primitive types to boxed primitives

• Avoid float and double if exact answers are required

• Beware the performance of string concatenation

• Adhere to generally accepted naming conventions

• Refer to objects by their interfaces

© Department of Computer Science UMD

Exceptions
• Use exceptions only for exceptional conditions

• Use checked exceptions for recoverable conditions

and run-time exceptions for programming errors

• Favor the use of standard exceptions

• Throw exceptions appropriate to the abstraction

• Document all exceptions thrown by each method

• Don't ignore exceptions (e.g., empty catch clauses)

© Department of Computer Science UMD

Generics
• Don’t use raw types

• E.g., raw type for List<E> is List

• Prefer lists to arrays

• Favor generic types and methods

• Define classes and methods using generics when possible

• Use bounded wildcards to increase API flexibility

© Department of Computer Science UMD

Avoid Duplicate Object Creation
• Reuse existing object instead

• Reuse improves clarity and performance

• Simplest example

String s = new String("DON’T DO THIS!");

String s = "Do this instead";

• Since Strings constants are reused

• In loops, savings can be substantial

• But don't be afraid to create objects

• Object creation is cheap on modern JVMs

© Department of Computer Science UMD

Object Duplication Example
public class Person {

private final Date birthDate;

public Person(Date birthDate){

this.birthDate = birthDate;

}

// UNNECESSARY OBJECT CREATION

public boolean bornBefore2000(){

Calendar gmtCal = Calendar.getInstance(

TimeZone.getTimeZone("GMT"));

gmtCal.set(2000,Calendar.JANUARY,1,0,0,0);

Date MILLENIUM = gmtCal.getTime();

return birthDate.before(MILLENIUM);

}

}

© Department of Computer Science UMD

Object Duplication Example
public class Person {

…

// STATIC INITIALIZATION CREATES OBJECT ONCE

private static final Date MILLENIUM;

static {

Calendar gmtCal = Calendar.getInstance(

TimeZone.getTimeZone("GMT"));

gmtCal.set(2000,Calendar.JANUARY,1,0,0,0);

Date MILLENIUM = gmtCal.getTime();

}

public boolean bornBefore2000(){ // FASTER!

return birthDate.before(MILLENIUM);

}

}

© Department of Computer Science UMD

Immutable Classes
• Class whose instances cannot be modified

• Examples

• String

• Integer

• BigInteger

© Department of Computer Science UMD

How to Write an Immutable Class
• Don’t provide any mutators (e.g., set methods)

• Ensure that no methods may be overridden

• Define class final

• Make all fields final

• Make all fields private

• Ensure exclusive access to any mutable components

© Department of Computer Science UMD

Immutable Fval Class Example
public final class Fval {

private final float f;

public Fval(float f) {

this.f = f;

}

// ACCESSORS WITHOUT CORRESPONDING MUTATORS

public float value() { return f; }

// ALL OPERATIONS RETURN NEW Fval

public Fval add(Fval x) {

return new Fval(f + x.f);

}

// SUBTRACT, MULTIPLY, ETC. SIMILAR TO ADD

© Department of Computer Science UMD

Immutable Float Example (cont.)
public boolean equals(Object o) {

if (o == this) return true;

if (!(o instanceof Fval))

return false;

Fval c = (Fval) o;

return (Float.floatToIntBits(f) ==

Float.floatToIntBits(c.f));

}

© Department of Computer Science UMD

Advantage 1 – Simplicity
• Instances have exactly one state

• Constructors establish invariants

• Invariants can never be corrupted

© Department of Computer Science UMD

Advantage 2 – Inherently Thread-Safe

• No need for synchronization

• Internal or external

• Since no writes to shared data

• Cannot be corrupted by concurrent access

• By far the easiest approach to thread safety

© Department of Computer Science UMD

Advantage 3 – Can Be Shared Freely
// EXPORTED CONSTANTS

public static final Fval ZERO = new Fval(0);

public static final Fval ONE = new Fval(1);

// STATIC FACTORY CAN CACHE COMMON VALUES

public static Fval valueOf(float f) { ...

}

// PRIVATE CONSTRUCTOR MAKES FACTORY MANDATORY

private Fval (float f) {

this.f = f;

}

© Department of Computer Science UMD

Advantage 4 – No Copies
• No need for defensive copies

• No need for any copies at all

• No need for clone or copy constructor

• Not well understood in the early days

• public String(String s); // Should not exist

© Department of Computer Science UMD

Advantage 5 – Composability
• Excellent building blocks

• Easier to maintain invariants

• If component objects won't change

© Department of Computer Science UMD

The Major Disadvantage
• Separate instance for each distinct value

• Creating these instances can be costly

BigInteger moby = ...; // A million bits

moby = moby.flipBit(0); // Ouch!

• Problem magnified for multistep operations

• Provide common multistep operations as primitives

• Alternatively, provide mutable companion class

© Department of Computer Science UMD

When to Make Classes Immutable
• Always, unless there's a good reason not to

• Always make small “value classes” immutable

• Examples

• Color

• PhoneNumber

• Price

• Date and Point (both mutable) were mistakes!

© Department of Computer Science UMD

When to Make Classes Mutable
• Class represents entity whose state changes

• Real-world

• BankAccount, TrafficLight

• Abstract

• Iterator, Matcher, Collection

• Process classes

• Thread, Timer

• If class must be mutable, minimize mutability

• Constructors should fully initialize instance

• Avoid reinitialize methods

© Department of Computer Science UMD

Defensive Copying
• Java programming language is safe

• Immune to buffer overruns, wild pointers, etc…

• Unlike C, C++

• Makes it possible to write robust classes

• Correctness doesn’t depend on other modules

• Even in safe language, it requires effort

• Defensive Programming

• Assume clients will try to destroy invariants

• May actually be true

• More likely – honest mistakes

• Ensure class invariants survive any inputs

© Department of Computer Science UMD

Defensive Copying

// GOAL – PERSON’S BIRTHDAY IS INVARIANT

public class Person {

// PROTECTS birthDate FROM MODIFICATION?????

private final Date birthDate;

public Person(Date birthDate){

this.birthDate = birthDate;

}

public Date bday() { return birthDate; }

}

• The following class is not robust!

• Problem #1: Constructor can allow invariant to be modified

// ATTACK INTERNALS OF PERSON

Date today = new Date();

Person p = new Person(today);

today.setYear(78); // MODIFIES P’S BIRTHDAY!

© Department of Computer Science UMD

Defensive Copying
• Problem #2: Accessor can allow invariant to be modified

// ACCESSOR ATTACK ON INTERNALS OF PERSON

Date today = new Date();

Person p = new Person(today);

Date bday = p.bday();

bday.setYear(78); // MODIFIES P’S BIRTHDAY!

• Solution

• Defensive copying in constructors and accessors

public class Person {

private final Date birthDate;

// REPAIRED CONSTRUCTOR

// DEFENSIVELY COPIES PARAMETERS

public Person(Date birthDate){

this.birthDate =

new Date(birthDate.getTime());

}

// REPAIRED ACCESSOR DEFENSIVELY COPY FIELDS

public Date bday() { (Date) birthDate.clone(); }

}

© Department of Computer Science UMD

Defensive Copying Summary
• Don’t incorporate mutable parameters into object

• Make defensive copies

• Return defensive copies of mutable fields

• Accesors

• Important

• First copy parameters, then check copy validity

• Eliminate window of vulnerability…

• …between parameter check and copy

• Thwarts multithreaded attack

• Use of immutable components eliminates the need for

defensive copying

© Department of Computer Science UMD

