CMSC 132:
OBJECT-ORIENTED PROGRAMMING Il

<=7, Effective Java

D% N o,
2 S Department of Computer Science

4
Rvuh University of Maryland, College Park

© Department of Computer Science UMD

Effective Java Textbook

- Title

- Most recent edition: Third Edition
- Author

- Joshua Bloch
- Contents

- Learn to use Java language and its libraries more
effectively

- Patterns and idioms to emulate
- Pitfalls to avoid

© Department of Computer Science UMD

What's In A Name?

public class Name {
private String myName;
public Name(String n) { myName =n; }
public boolean equals(Object 0) {
iIf (!(o instanceof Name)) return false;
Name n = (Name)o;
return myName.equals(n.myName);

}

public static void main(String[] args) {
Set s = new HashSet();
s.add(new Name("Donald"));
System.out.printin(
s.contains(new Name("Donald")));

b}

Output
1. True
2. False

3. It Varies

Name class
violates Java

hashCode()
contract.

If you override
equals(), must
also override
hashCode()!

© Department of Computer Science UMD

You're Such A Character

public class Trivial { Output
public static void main(String args|]) { 1. Ha
System.out.print("H" + "a"); 2. HaHa
System.out.print('H' + 'a’);
\ J Prints Hal69

'H' + 'a' evaluated as int,
then converted to String!

Use string concatenation
(+) with care. At least one
operand must be a String

Time For A Change

Problem
If you pay $2.00 for a gasket that costs $1.10, how much change do
you get?
Output
public class Change { 1. 0.9
public static void main(String args[]) { 2. _0.90
System.out.printin(2.00 - 1.10); 3. Neither
} Prints 0.8999999999999999. Decimal
} values can’t be represented exactly by

float or double

Avoid float or double where exact
answers are required. Use BigDecimal,
Int, or long instead

© Department of Computer Science UMD

Classes and Interfaces

- Minimize the accessibility of classes and members
- Favor immutabillity

- Favor composition over inheritance

- Prefer interfaces to abstract classes

- Always override toString

- Makes your class more pleasant to use and makes
systems using the class easier to debug

© Department of Computer Science UMD

Classes and Interfaces

- Consider implementing Comparable for a class

- You class will interoperate with all of the many generic
algorithms and collection implementations available

- A file should store a single top-level class

- You can have multiple top level class if only one (or
none) are public

- Prefer lambdas to anonymous classes

- Omit the types of lambda parameters unless their
presence improves program’s clarity

- Use a standard functional interfaces when possible
(instead of a purpose-built one)

© Department of Computer Science UMD

Methods

- Check parameters for validity

- Make defensive copies when needed (more about this
topic later on)

- Use overloading judiciously

- Return zero-length arrays, not nulls

- Write doc comments for all exposed API elements
- Prefer alternatives to Java Serialization

- Other mechanisms exist that avoid the dangers
associated with Java serialization

© Department of Computer Science UMD

General Programming

- Minimize the scope of local variables
- Declare them close to where they are used
- Prefer for-each loops to traditional for loops

- For loops over while loops Iif the iteration variable will not be
used after the loop is over

- Know and use the libraries
- Every programmer should be familiar with java.lang, java.util, java.io

© Department of Computer Science UMD

General Programming

- Prefer primitive types to boxed primitives
- Avoid float and double if exact answers are required

- Beware the performance of string concatenation
- Adhere to generally accepted naming conventions
- Refer to objects by their interfaces

© Department of Computer Science UMD

Exceptions

- Use exceptions only for exceptional conditions

- Use checked exceptions for recoverable conditions
and run-time exceptions for programming errors

- Favor the use of standard exceptions

- Throw exceptions appropriate to the abstraction

- Document all exceptions thrown by each method

- Don't ignore exceptions (e.g., empty catch clauses)

© Department of Computer Science UMD

Generics

- Don’t use raw types
- E.g., raw type for List<E> is List
- Prefer lists to arrays
- Favor generic types and methods
- Define classes and methods using generics when possible
- Use bounded wildcards to increase API flexibility

© Department of Computer Science UMD

Avoid Duplicate Object Creation

- Reuse existing object instead
- Reuse improves clarity and performance

- Simplest example
String s = new String("DON’'T DO THIS!") ;

String s = "Do this instead";

- Since Strings constants are reused
- In loops, savings can be substantial
- But don't be afraid to create objects
- Object creation is cheap on modern JVMs

© Department of Computer Science UMD

Object Duplication Example

public class Person ({
private final Date birthDate;
public Person (Date birthDate) {
this.birthDate = birthDate;

}
// UNNECESSARY OBJECT CREATION

public boolean bornBefore2000 () {
Calendar gmtCal = Calendar.getInstance (
TimeZone.getTimeZone ("GMT")) ;
gmtCal.set (2000,Calendar.JANUARY,1,0,0,0);
Date MILLENIUM = gmtCal.getTime () ;
return birthDate.before (MILLENIUM) ;

© Department of Computer Science UMD

Object Duplication Example

public class Person {

// STATIC INITIALIZATION CREATES OBJECT ONCE

private static final Date MILLENIUM;

static {
Calendar gmtCal = Calendar.getInstance (

TimeZone.getTimeZone ("GMT")) ;
gmtCal.set (2000,Calendar.JANUARY,1,0,0,0);
Date MILLENIUM = gmtCal.getTime () ;
}
public boolean bornBefore2000(){ // FASTER!
return birthDate.before (MILLENIUM) ;

}

© Department of Computer Science UMD

Immutable Classes

- Class whose instances cannot be modified
- Examples

- String

- Integer

- Biglnteger

© Department of Computer Science UMD

How to Write an Immutable Class

- Don’t provide any mutators (e.g., set methods)
- Ensure that no methods may be overridden
- Define class final
- Make all fields final
- Make all fields private
- Ensure exclusive access to any mutable components

© Department of Computer Science UMD

Immutable Fval Class Example

public final class Fval {

private final float f£;

public Fval (float f) {
this.f = £;

}
// ACCESSORS WITHOUT CORRESPONDING MUTATORS

public float value() { return f£; }

// ALL OPERATIONS RETURN NEW Fval

public Fval add(Fval x) {
return new Fval(f + x.£f);

}
// SUBTRACT, MULTIPLY, ETC. SIMILAR TO ADD

© Department of Computer Science UMD

Immutable Float Example (cont.)

public boolean equals (Object o) {

if (o == this) return true;
if (! (o instanceof Fval))
return false;
Fval ¢ = (Fval) o;
return (Float.floatToIntBits(f) ==
Float.floatToIntBits(c.f)) ;

Advantage 1 — Simplicity

- Instances have exactly one state

- Constructors establish invariants
- Invariants can never be corrupted

Advantage 2 — Inherently Thread-Safe

- No need for synchronization

- Internal or external

- Since no writes to shared data
- Cannot be corrupted by concurrent access
- By far the easiest approach to thread safety

© Department of Computer Science UMD

Advantage 3 — Can Be Shared Freely

// EXPORTED CONSTANTS
public static final Fval ZERO = new Fval (0);
public static final Fval ONE = new Fval(l);
// STATIC FACTORY CAN CACHE COMMON VALUES
public static Fval valueOf (float f) {
}
// PRIVATE CONSTRUCTOR MAKES FACTORY MANDATORY
private Fval (float f) ({

this.f = £;

Advantage 4 — No Copies

- No need for defensive copies
- No need for any copies at all
- No need for clone or copy constructor
- Not well understood in the early days
- public String(String s); // Should not exist

© Department of Computer Science UMD

Advantage 5 — Composabllity

- Excellent building blocks
- Easier to maintain invariants
- If component objects won't change

© Department of Computer Science UMD

The Major Disadvantage

- Separate instance for each distinct value
- Creating these instances can be costly

BigInteger moby = ...; // A million bits
moby = moby.flipBit(0); // Ouch!

- Problem magnified for multistep operations
- Provide common multistep operations as primitives
- Alternatively, provide mutable companion class

© Department of Computer Science UMD

When to Make Classes Immutable

- Always, unless there's a good reason not to
- Always make small “value classes” immutable
- Examples
- Color
- PhoneNumber
- Price
- Date and Point (both mutable) were mistakes!

© Department of Computer Science UMD

When to Make Classes Mutable

- Class represents entity whose state changes
- Real-world
- BankAccount, TrafficLight
- Abstract
- Iterator, Matcher, Collection
- Process classes
- Thread, Timer
- If class must be mutable, minimize mutabllity
- Constructors should fully initialize instance
- Avoid reinitialize methods

© Department of Computer Science UMD

Defensive Copying

- Java programming language is safe
- Immune to buffer overruns, wild pointers, etc...
- Unlike C, C++
- Makes it possible to write robust classes
- Correctness doesn’'t depend on other modules
- Even in safe language, it requires effort
- Defensive Programming
- Assume clients will try to destroy invariants
- May actually be true
- More likely — honest mistakes
- Ensure class invariants survive any inputs

Defensive Copying

- The following class is not robust!

// GOAL — PERSON’S BIRTHDAY IS INVARIANT
public class Person ({

private final Date birthDate;
public Person (Date birthDate) {
this.birthDate = birthDate;

}
public Date bday() { return birthDate; }

}

- Problem #1: Constructor can allow invariant to be modified

// ATTACK INTERNALS OF PERSON

Date today = new Date() ;

Person p = new Person (today) ;

today.setYear (78) ; // MODIFIES P’S BIRTHDAY!

© Department of Computer Science UMD

Defensive Copying

- Problem #2: Accessor can allow invariant to be modified

// ACCESSOR ATTACK ON INTERNALS OF PERSON
Date today = new Date();

Person p = new Person (today) ;

Date bday = p.bday()

bday.setYear (78) ; // MODIFIES P’S BIRTHDAY!

- Solution
- Defensive copying in constructors and accessors

public class Person ({
private final Date birthDate;

// REPAIRED CONSTRUCTOR
// DEFENSIVELY COPIES PARAMETERS
public Person (Date birthDate) {

this.birthDate =

new Date (birthDate.getTime()) ;

}
// REPAIRED ACCESSOR DEFENSIVELY COPY FIELDS
public Date bday() { (Date) birthDate.clone(); }

© Department of Computer Science UMD

Defensive Copying Summary

- Don’t incorporate mutable parameters into object
- Make defensive copies
- Return defensive copies of mutable fields
- Accesors
- Important
- First copy parameters, then check copy validity
- Eliminate window of vulnerability...
* ...between parameter check and copy
- Thwarts multithreaded attack

- Use of immutable components eliminates the need for
defensive copying

