
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Software Development

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Modern Software Development
• Why do we want to study the software development process?

• To understand

• Software development problems

• Why software projects fail

• Impact of software failures

• How to develop better software

© Department of Computer Science UMD

Software Engineering
• Software Engineering (Definition from Wikipedia)

• Field that creates and maintains software

applications by applying technologies and practices

from computer science, project management,

engineering, application domains, and other fields

© Department of Computer Science UMD

Software Development Problems
• Expensive

• Cost per line of code growing (unlike hardware)

• More expensive than projected

• Difficult to understand

• Missing features

• Too slow

• Frequently late

© Department of Computer Science UMD

Impact of Software Failures Increasing
• Software becoming part of basic infrastructure

• Software in cars, appliances

• Internet of things

• Business transactions are online

• Computers becoming increasingly connected

• Failures can propagate through internet

• Internet worms

• Failures can be exploited by others

• Viruses

• Spyware

© Department of Computer Science UMD

Famous Software Failures
• 1985 Therac-25 Medical Accelerator

• Therac-25 was a radiation therapy device

• Race condition lead patients receiving lethal or near lethal doses of

radiation

• 1990 AT&T long distance calls fail for 9 hours

• Wrong location for C break statement

• 1996 Ariane rocket explodes on launch

• Overflow converting 64-bit number into a 16-bit number

• 1999 Mars Climate Orbiter Crashes on Mars

• Missing conversion of English units to metric units

© Department of Computer Science UMD

Why Is Software So Difficult?
• Complexity

• Software becoming much larger

• Millions of line of code

• Hundreds of developers

• Many more interacting pieces

• Length of use

• Software stays in use longer

• Features & requirements change

• Data sets increase

• Can outlast its creators

© Department of Computer Science UMD

Software Size
• Small software projects

• Can keep track of details in head

• Last for short periods

• What students learn in school

• Large projects

• Much more complex

• Commonly found in real world

• Why we try to teach you

• Software engineering

• Object-oriented programming

© Department of Computer Science UMD

Software Life Cycle
• Coding is only part of software development

• Software engineering requires

• Preparation before writing code

• Follow-up work after coding is complete

• Software life cycle

• List of essential operations / tasks

• Needed for developing good software

• No universal agreement on details

© Department of Computer Science UMD

Components of Software Life Cycle
1. Problem specification

2. Program design

3. Algorithms and data structures

4. Coding and debugging

5. Testing and verification

6. Deployment

7. Documentation and support

8. Maintenance and Upgrades

© Department of Computer Science UMD

Software Development
• Coding is small part of software development

• Estimated % of time

• 35% Specification, design

• 20% Coding, debugging

• 30% Testing, reviewing, fixing

• 15% Documentation, support

© Department of Computer Science UMD

Problem Specification
• Goal

• Create complete, accurate, and unambiguous statement of

problem to be solved (not as simple as it looks)

• Example

• Specification of input & output of program

• Problems

• Description may be inaccurate or change over time

• Difficult to specify behavior for all inputs

© Department of Computer Science UMD

Program Design
• Goal

• Break software into integrated set of components that work

together to solve problem specification

• Example

• Problems

• Methods for decomposing problem

• How components work together

© Department of Computer Science UMD

Algorithms and Data Structures
• Goal

• Select algorithms and data structures to implement each

component

• Problems

• Functionality

• Provides desired abilities

• Efficiency

• Provides desired performance

• Correctness

• Provides desired results

© Department of Computer Science UMD

Algorithms and Data Structures
• Example

• Implement list as array or linked list

© Department of Computer Science UMD

Coding and Debugging
• Goal

• Write actual code and ensure code works

• Problems

• Choosing programming language

• Procedural design

• Fortran, BASIC, Pascal, C

• Object-oriented design

• Smalltalk, C++, Java

• Using language features

• Exceptions, streams, threads

© Department of Computer Science UMD

Testing and Verification
• Goal

• Demonstrate software correctly match specification

• Problem

• Program verification

• Formal proof of correctness

• Difficult / impossible for large programs, but if you can prove
you should, since the guarantees are so much stronger than
testing

• Empirical testing

• Verify using test cases

• Unit tests, integration tests, alpha / beta tests

• Used in majority of cases in practice

• You don’t know what may happen for tests you did not run

© Department of Computer Science UMD

Documentation and Support
• Goal

• Provide information needed by users and technical

maintenance

• Problems

• User documentation

• Help users understand how to use software

• Technical documentation

• Help coders understand how to modify, maintain software

© Department of Computer Science UMD

Maintenance
• Goal

• Keep software working over time

• Problems

• Fix errors

• Improve features

• Meet changing specification

• Add new functionality

© Department of Computer Science UMD

Software Process Models
• Software methodology

• Codified set of practices

• Repeatable process for producing quality software

• Software process model

• Methodology for organizing software life cycle

• Major approaches

• Waterfall model

• Iterative development

oUnified model

oAgile software development

oExtreme programming (XP) (prominent example)

• Formal methods

© Department of Computer Science UMD

Waterfall Model
• Approach

• Perform steps in order

• Begin new step only when

previous step is complete

• Result of each step flow

into next step

© Department of Computer Science UMD

Waterfall Model
• Advantages

• Simple

• Predictable results (emphasizes predictability)

• Software follows specifications

• Reasonable for small projects

• Problems

• In real life

• May need to return to previous step

• Steps may be more integrated

• Steps may occur at same time

• Unworkable for large projects

© Department of Computer Science UMD

Iterative Software Development
• Approach

• Iteratively add incremental improvements

• Take advantage of what was learned from earlier versions of the

system

• Use working prototypes to refine specifications

© Department of Computer Science UMD

Iterative Software Development
• Goals

• Emphasize adaptability instead of predictability

• Respond to changes in customer requirements

• Examples

• Unified model

• Agile software development

• Extreme programming (XP)

© Department of Computer Science UMD

Formal Methods
• Mathematically-based techniques for

• Specification, development, and verification

• Software and hardware systems

• Intended for high-integrity systems

• Safety

• Security

© Department of Computer Science UMD

Software Architecture
• Software Architecture

• Big picture of the software

• Components generally bigger than objects or classes

© Department of Computer Science UMD

Architecture of ProMoT
Just an arbitrary

example of a

real-world

software

architecture

© Department of Computer Science UMD

Different Architecture Styles
• The same system can be described using several different

architecture styles

• Pipes and filters

• What is the data, and what components do they move

through

• Blackboard

• Components communicate through a shared, updatable

blackboard

© Department of Computer Science UMD

Compiler Architecture
• Pipes and Filters (Passing a tree)

© Department of Computer Science UMD

Compiler Architecture, Revisited
• Blackboard

© Department of Computer Science UMD

