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Overview
• Binary trees

• Balance

• Rotation

• Multi-way trees

• Search

• Insert

• Indexed tries
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Tree Balance
• Degenerate

• Worst case

• Search in O(n) time

• Balanced

• Average case

• Search in O( log(n) ) time

Degenerate 

binary tree

Balanced 

binary tree

© Department of Computer Science UMD



Tree Balance
• Question

• Can we keep tree (mostly) balanced?

• Self-balancing binary search trees

• AVL trees

• Red-black trees

• Approach

• Select invariant (that keeps tree balanced)

• Fix tree after each insertion / deletion 

• For example, maintain invariant using rotations

• Provides operations with O( log(n) ) worst case
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AVL Trees
• Properties

• Binary search tree

• Heights of children for node differ by at most 1 

• Example
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Red-black Trees
• Java collections

• TreeMap and TreeSet use red-black trees

• Properties

• Binary search tree

• Every node is red or black

• Characteristics
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Multi-way Search Trees
• Properties

• Generalization of binary search tree

• Node contains 1…k keys (in sorted order)

• Node contains 2…k+1 children

• Keys in jth child < jth key < keys in (j+1)th child

• Examples
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Types of Multi-way Search Trees
• 2-3 Tree

• Internal nodes have 2 or 3 children

• Indexed Search Tree (trie)

• Internal nodes have up to 26 children 

(for strings)

• B-Tree

• T = minimum degree 

• Height of tree is O( logT(n) )

• All leaves have same depth

• Popular for large databases indices

• 1 node = 1 disk block
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1 2T2 …
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Indexed Search Tree (Trie)
• Special case of tree

• Applicable when 

• Key C can be decomposed into a sequence of subkeys C1, C2, … Cn

• Redundancy exists between subkeys

• Approach

• Store subkey at each node

• Path through trie yields full key
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Standard Trie Example
• Example for strings { bear, bell, bid, bull, buy, sell, stock, stop }
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Word Location Trie
• Insert words 

into trie

• Each leaf 

stores locations 

of word in the 

text 
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Compressed Trie
• Observation

• Internal node v of T is redundant if v has one child and is 

not the root

• Approach

• A chain of redundant nodes can be compressed 

• Replace chain with single node 

• Include concatenation of labels from chain

• Result

• Internal nodes have at least 2 children

• Some nodes have multiple characters
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Compressed Trie
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Tries and Web Search Engines
• Search engine index

• Collection of all searchable words

• Stored in compressed trie

• Each leaf of trie

• Associated with a word 

• List of pages (URLs) containing that word 

• Called occurrence list

• Trie is kept in memory (fast)

• Occurrence lists kept in external memory

• Ranked by relevance
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