CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Advanced Tree Structures

Department of Computer Science University of Maryland, College Park

Binary trees

- Balance
- Rotation
- Multi-way trees
 - Search
 - Insert
- Indexed tries

Tree Balance

Degenerate

- Worst case
- Search in O(n) time

Balanced

- Average case
- Search in O(log(n)) time

Tree Balance

- Question
 - Can we keep tree (mostly) balanced?
- Self-balancing binary search trees
 - AVL trees
 - Red-black trees

Approach

- Select invariant (that keeps tree balanced)
- Fix tree after each insertion / deletion
 - For example, maintain invariant using rotations
- Provides operations with O(log(n)) worst case

Properties

- Binary search tree
- Heights of children for node differ by at most 1
- Example

Red-black Trees

- Java collections
 - TreeMap and TreeSet use red-black trees
- Properties
 - Binary search tree
 - Every node is red or black
- Characteristics

Multi-way Search Trees

Properties

- Generalization of binary search tree
- Node contains 1...k keys (in sorted order)
- Node contains 2...k+1 children
- Keys in jth child < jth key < keys in (j+1)th child

Examples

Types of Multi-way Search Trees

• 2-3 Tree

- Internal nodes have 2 or 3 children
- Indexed Search Tree (trie)
 - Internal nodes have up to 26 children (for strings)

• B-Tree

- **T** = minimum degree
- Height of tree is $O(log_T(n))$
- All leaves have same depth
- Popular for large databases indices
 - 1 node = 1 disk block

Indexed Search Tree (Trie)

- Special case of tree
- Applicable when
 - Key C can be decomposed into a sequence of subkeys C₁, C₂, ... C_n
 - Redundancy exists between subkeys
- Approach
 - Store subkey at each node
 - Path through trie yields full key

Standard Trie Example

• Example for strings { bear, bell, bid, bull, buy, sell, stock, stop }

Word Location Trie

- Insert words into trie
- Each leaf stores locations of word in the text

Compressed Trie

Observation

 Internal node v of T is redundant if v has one child and is not the root

Approach

- A chain of redundant nodes can be compressed
 - Replace chain with single node
 - Include concatenation of labels from chain

Result

- Internal nodes have at least 2 children
- Some nodes have multiple characters

Tries and Web Search Engines

Search engine index

- Collection of all searchable words
- Stored in compressed trie
- Each leaf of trie
 - Associated with a word
 - List of pages (URLs) containing that word
 - Called occurrence list
- Trie is kept in memory (fast)
- Occurrence lists kept in external memory
 - Ranked by relevance