
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Advanced Tree Structures

Department of Computer Science

University of Maryland, College Park

© Department of Computer Science UMD

Overview
• Binary trees

• Balance

• Rotation

• Multi-way trees

• Search

• Insert

• Indexed tries

© Department of Computer Science UMD

Tree Balance
• Degenerate

• Worst case

• Search in O(n) time

• Balanced

• Average case

• Search in O(log(n)) time

Degenerate

binary tree

Balanced

binary tree

© Department of Computer Science UMD

Tree Balance
• Question

• Can we keep tree (mostly) balanced?

• Self-balancing binary search trees

• AVL trees

• Red-black trees

• Approach

• Select invariant (that keeps tree balanced)

• Fix tree after each insertion / deletion

• For example, maintain invariant using rotations

• Provides operations with O(log(n)) worst case

© Department of Computer Science UMD

AVL Trees
• Properties

• Binary search tree

• Heights of children for node differ by at most 1

• Example

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

Heights of

children

shown in red

© Department of Computer Science UMD

Red-black Trees
• Java collections

• TreeMap and TreeSet use red-black trees

• Properties

• Binary search tree

• Every node is red or black

• Characteristics

© Department of Computer Science UMD

Multi-way Search Trees
• Properties

• Generalization of binary search tree

• Node contains 1…k keys (in sorted order)

• Node contains 2…k+1 children

• Keys in jth child < jth key < keys in (j+1)th child

• Examples

5 12

2 178

5 8 15 33

1 3 19 2197 44

© Department of Computer Science UMD

Types of Multi-way Search Trees
• 2-3 Tree

• Internal nodes have 2 or 3 children

• Indexed Search Tree (trie)

• Internal nodes have up to 26 children

(for strings)

• B-Tree

• T = minimum degree

• Height of tree is O(logT(n))

• All leaves have same depth

• Popular for large databases indices

• 1 node = 1 disk block

T-1 … 2T-1

1 2T2 …

5 12

2 178

c

a so

© Department of Computer Science UMD

Indexed Search Tree (Trie)
• Special case of tree

• Applicable when

• Key C can be decomposed into a sequence of subkeys C1, C2, … Cn

• Redundancy exists between subkeys

• Approach

• Store subkey at each node

• Path through trie yields full key

C3

C1

C2

C4C3

© Department of Computer Science UMD

Standard Trie Example
• Example for strings { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

© Department of Computer Science UMD

Word Location Trie
• Insert words

into trie

• Each leaf

stores locations

of word in the

text

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

a r

87 88

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6

l

78

d

47, 58
l

30

y

36
l

12
k

17, 40,

51, 62

p

84

h

e

r

69

a

© Department of Computer Science UMD

Compressed Trie
• Observation

• Internal node v of T is redundant if v has one child and is

not the root

• Approach

• A chain of redundant nodes can be compressed

• Replace chain with single node

• Include concatenation of labels from chain

• Result

• Internal nodes have at least 2 children

• Some nodes have multiple characters

© Department of Computer Science UMD

Compressed Trie

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

• Example

© Department of Computer Science UMD

Tries and Web Search Engines
• Search engine index

• Collection of all searchable words

• Stored in compressed trie

• Each leaf of trie

• Associated with a word

• List of pages (URLs) containing that word

• Called occurrence list

• Trie is kept in memory (fast)

• Occurrence lists kept in external memory

• Ranked by relevance

© Department of Computer Science UMD

