
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Synchronization in Java I

Department of Computer Science

University of Maryland, College Park

Multithreading Overview
• Motivation & background

• Threads

• Creating Java threads

• Thread states

• Scheduling

• Synchronization

• Data races

• Locks

• Deadlock

© Department of Computer Science UMD

Data Race
• Definition

• Concurrent accesses to same shared variable/resource, where

at least one access is a write/update operation

• Resource → map, set, array, etc.

• Properties

• Order of accesses may change result of program

• May cause intermittent errors, very hard to debug

© Department of Computer Science UMD

Data Race Example
public class DataRace extends Thread {

static int common = 0;

public void run() {

int local = common; // Data race

local = local + 1;

common = local; // Data race

}

public static void main(String[] args) throws InterruptedException {

int max = 3;

DataRace[] allThreads = new DataRace[max];

for (int i = 0; i < allThreads.length; i++)

allThreads[i] = new DataRace();

for (DataRace thread : allThreads)

thread.start();

for (DataRace t : allThreads)

thread.join();

System.out.println(common); // May not be 3

}

}

© Department of Computer Science UMD

Data Race Example
• Sequential execution output

© Department of Computer Science UMD

Data Race Example
• Concurrent execution output (possible case)

• Result depends on thread execution order!

© Department of Computer Science UMD

Synchronization
• Definition

• Coordination of events with respect to time

• Properties

• May be needed in multithreaded programs to eliminate data

races

• Incurs runtime overhead

• Excessive use can reduce performance

© Department of Computer Science UMD

Lock
• Definition

• Entity that can be held by only one thread at a time

• Properties

• A type of synchronization

• Used to enforce mutual exclusion so we can protect the critical

section

• Critical section in previous example was increasing common

• Note: critical section should not be confused with the term critical

section used for algorithmic complexity analysis

• Thread can acquire/release locks

• Only one thread can acquire lock at a time

• Thread waits to acquire a lock (stops execution) if lock held by

another thread

© Department of Computer Science UMD

Java Locks
• Every Java object has a lock

• A lock can be held by only one thread at a time

• A thread acquires the lock by using synchronized

• Acquiring lock example (you acquire lock of an object)

Object x = new Object(); // We can use any object as “locking object”

synchronized(x) { // Thread tries to acquire lock on x on entry

... // Thread holds lock on x in the block

} // Thread releases lock on x on exit

• When synchronized is executed the:

• Thread will be able to acquire the lock if no other thread has it

• Thread will block if another thread has the lock (enforces mutual exclusion)

• Lock is released when block terminates

• End of synchronized block is reached

• Exit block due to return, continue, break

• Exception is thrown

© Department of Computer Science UMD

Fixing Data Race In Our Example

© Department of Computer Science UMD

Fixing Previous Example
public class DataRace extends Thread {

static int common = 0;
static Object lockObj = new Object(); // All threads use lockObj’s lock

public void run() {
synchronized(lockObj) { // Only one thread will be allowed

int local = common; // Data race eliminated
local = local + 1;
common = local;

}
}

public static void main(String[] args) {
…

}
}

• Keep in mind that lock objects do not need to be static (static is used in the
above example to allow the sharing of the lock among all threads)

• How would you solve the data race without using a static lock object? (see
next slide)

© Department of Computer Science UMD

Lock Example (Modified Solution)
public class DataRace extends Thread {

static int common = 0;
Object lockObj; // Not static lock object reference

public DataRace(Object lockObj) {
this.lockObj = lockObj;

}

public void run() {
synchronized(lockObj) { // Only one thread will be allowed

int local = common; // Data race eliminated
local = local + 1;
common = local;

}
}

public static void main(String[] args) {
Object lockObj = new Object(); // All threads use lockObj’s lock

DataRace t1 = new DataRace(lockObj);
DataRace t2 = new DataRace(lockObj);
…

}
}

© Department of Computer Science UMD

Another Example (Account)
• We have a bank account shared by two kinds of buyers (Excessive and Normal)

• We can perform deposits, withdrawals, and balance requests for an account

• Critical section - account access

• First solution - Example: explicitLockObj

• We use lockObj to protect access to the Account object

• Second solution - Example: accountAsLockObj

• We don’t need to define an object to protect the Account object as Account

object already has a lock

• You must protect the critical section wherever it appears in your code, otherwise

several threads may access the critical section simultaneously

• Protecting the critical section that appears in one part of your code will not

automatically protect the critical section everywhere it appears in your code

• In our example, that translate to having one buyer forgetting to synchronize

access to the account. The fact the other buyer is using a lock does not protect

the critical section

© Department of Computer Science UMD

