
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Threads in Java

Department of Computer Science

University of Maryland, College Park

Problem
• Multiple tasks for computer

• Draw & display images on screen

• Check keyboard & mouse input

• Send & receive data on network

• Read & write files to disk

• Perform useful computation (editor, browser, game)

• How does computer do everything at once?

• Multitasking

• Multiprocessing

© Department of Computer Science UMD

Multitasking (Time-Sharing)
• Approach

• Computer does some work on a task

• Computer then quickly switch to next task

• Tasks managed by operating system (scheduler)

• Computer seems to work on tasks concurrently

• Can improve performance by reducing waiting

© Department of Computer Science UMD

Multitasking Can Aid Performance
• Single task

• Two tasks

© Department of Computer Science UMD

Multiprocessing
• Approach

• Multiple processing units

• Computer works on several tasks in parallel

• Performance can be improved

4096

processor

Cray X1

32

processor

Pentium

Xeon

Dual-core

AMD

Athlon X2

Beowulf computer

cluster (Borg, 52-

node cluster used

by McGill University

Image/Info from

Wikipedia)

© Department of Computer Science UMD

http://www.cray.com/images/systems/X1-LCIO72.jpg

Perform Multiple Tasks Using Processes
• Process

• Definition - executable program loaded in memory

• Has own address space

• Address space - Variables & data structures (in memory)

• Each process may execute a different program

• Communicate via operating system, files, network

• A process may contain multiple threads

© Department of Computer Science UMD

Perform Multiple Tasks Using Threads
• Thread (“lightweight process”)

• Definition → sequentially executed stream of instructions

• Has own execution context

• Program counter, call stack (local variables)

• Communicate via shared access to data

• Also known as “lightweight process”

• Let’s see how memory is organized for a threaded environment

• Diagram
• http://blog.codecentric.de/wp-content/uploads/2009/12/java-memory-architecture.jpg

© Department of Computer Science UMD

http://blog.codecentric.de/wp-content/uploads/2009/12/java-memory-architecture.jpg

Motivation for Multithreading
• Captures logical structure of problem

• May have concurrent interacting components

• Can handle each component using separate thread

• Simplifies programming for problem

• Example

Web Server uses

threads to handle …
Multiple simultaneous

web browser requests

© Department of Computer Science UMD

Motivation for Multithreading
• Better utilization of hardware resources

• When a thread is delayed, execute other threads

• Given extra hardware, execute threads in parallel

• Reduce overall execution time

• Example

Multiple simultaneous

web browser requests…

Handled faster by

multiple web servers

© Department of Computer Science UMD

Concurrent Programming
• Concurrent programming

• Writing programs divided into independent tasks

• Tasks may be executed in parallel on multiprocessors

© Department of Computer Science UMD

Creating Threads in Java
• Two approaches to create threads

• Extending Thread class (NOT RECOMMENDED)

• Runnable interface approach (PREFERED)

• Approach 1: Extending Thread class

• We override the Thread class run() method

• The run() method defines the actual task the thread performs

• Example:
public class MyT extends Thread {

public void run() {
… // Defines task for the thread

}
}
MyT t = new MyT() ; // Create thread
t.start(); // Thread gets in line waiting to be executed
…

• Example: message, messageThreadExtends packages

© Department of Computer Science UMD

Creating Threads in Java
• Approach 2: Runnable Interface

• Define a class (worker) that implements the Runnable interface

public interface Runnable {

public void run(); // work done by thread

}

• Create thread to execute the run() method

• Alternative 1: Create thread object and pass worker object to Thread
constructor

• Alternative 2: Hand worker object to an executor

• Example:

public class Worker implements Runnable {

public void run() { // work for thread }

}

Thread t = new Thread(new Worker()); // Create thread
t.start(); // Thread gets in line waiting to be

// executed
…

• Example: message, messageThreadRunnable packages

© Department of Computer Science UMD

Why Extending Thread Not Recommended?
• Not a big problem for getting started

• But a bad habit for industrial strength development

• Methods of worker and Thread class intermixed

• Hard to migrate to more efficient approaches

• Thread Pools

© Department of Computer Science UMD

Thread Class
public class Thread extends Object implements Runnable {

public Thread();

public Thread(String name); // Thread name

public Thread(Runnable R);

public Thread(Runnable R, String name);

public void run(); // work for thread

public void start(); // thread gets in line so it eventually it can run

...

}

© Department of Computer Science UMD

More Thread Class Methods
public class Thread extends Object {

…

public static Thread currentThread()

public String getName()

public void interrupt() // alternative to stop (deprecated)

public boolean isAlive()

public void join()

public void setDaemon()

public void setName()

public void setPriority()

public static void sleep()

public static void yield()

}

© Department of Computer Science UMD

Creating Threads in Java
• Note

• Thread eventually starts executing only if start() is called

• Calling start() does not mean the thread will start executing
immediately

• Runnable is an interface

• Therefore, it can be implemented by any class

• A class can implement the interface, but not used for threading

• Do not call the run method directly

• If using class instance as a thread

© Department of Computer Science UMD

Threads – Thread States
• Java thread can be in one of these states

• New → thread allocated & waiting for start()

• Runnable → thread can begin execution

• Running → thread currently executing

• Waiting/Blocked → thread waiting for event (I/O, etc.)

• Terminated/Dead → thread finished/exited

• Transitions between states caused by

• Invoking methods in class Thread

• new(), start(), yield(), sleep(), wait(), notify()…

• Other (external) events

• Scheduler, I/O, returning from run()…

• In Java, states are defined by Thread.State

• https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.State.html

© Department of Computer Science UMD

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.State.html

Threads – Thread States
• State diagram

runnable

scheduler

new

dead

running blocked

new start

terminate
IO, sleep,

wait, join

yield,

time

slice

notify, notifyAll,

IO complete,

sleep expired,

join complete

Running is a logical state → indicates runnable thread is actually running

© Department of Computer Science UMD

Reference
• https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

© Department of Computer Science UMD

https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

