Grid Coloring

250H

• No matter how you 2-color a 3 x 9 grid there exists a mono rectangle

•	•	
•	•	
•	•	
•	•	
•	•	
	•	

• No matter how you 2-color a 3 x 9 grid there exists a mono rectangle

• No matter how you 2-color a 3 x 9 grid there exists a mono rectangle

- No matter how you 2-color a 3 x 9 grid there exists a mono rectangle
- What about a
 - o 3 x 8
 - o 3 x 7
 - o 3 x 6
 - o ect?

- No matter how you 2-color a 3 x 9 grid there exists a mono rectangle
- What about a
 - o 3 x 8
 - o 3 x 7
 - o 3 x 6
 - o ect?
- I know you are all super excited to talk about this with your classmates in Breakout Rooms

- No matter how you 2-color a 3 x 9 grid there exists a mono rectangle
- What about a

\circ	2	\/	0
\circ		Х	0

- \circ 3 x 7
- 3 x 6
- o ect?

Let's Look Closer

A 2-coloring of a 3x7 grid can be viewed as an 8-coloring of the rows, so if there are 9 rows, two are the same.

What about?

- 4x4
- 4x5
- 4x6
- 5x5
- 5x6

What about?

- 4x4
- 4x5
- 4x6
- 5x5
- 5x6

n x m grid 2-Coloring Theorem

Theorem: n x m is 2-colorable without a monochromatic rectangle if and only if it does not contain a 3×7 , 7×3 , or 5×5 grid.

What if we have 3 colors?

What grids can we color without getting a monochromatic rectangle?

What if we have 3 colors?

Theorem: n x m is 3-colorable without a monochromatic rectangle if and only if it does not contain a 19 x 4, 16 x 5, 13 x 7, 11 x 10, 10 x 11, 7 x 13, 5 x 16, 4 x 19 grid.