Modular Arithmetic and Floor and Ceiling Functions

The Division Algorithm: Let a be an integer and d a positive integer, then there are unique integers q and r, with $0 \le r \le d$, such that a = dq + r.

- *d* is the divisor
- a is the dividend
- q is the quotient
- r is the remainder

The Division Algorithm: Let a be an integer and d a positive integer, then there are unique integers q and r, with $0 \le r \le d$, such that a = dq + r.

- d is the divisor
- a is the dividend
- q is the quotient
- *r* is the remainder

$$r = a \pmod{d}$$

Def: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a - b. We use the notation $a \equiv b \pmod{m}$ to indicate that a is congruent to b modulo m. We say that $a \equiv b \pmod{m}$ is a congruence and the m is its modulus.

We will mainly use mods like this:

 $100 \equiv 2 \pmod{7}$

Ie. *Insert Really Gross Number* $\equiv x \pmod{m}$ where x in $\{0, 1, ..., m-1\}$

Theorem: Let *a* and *b* be integers, and let *m* be a positive integer.

Then $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Theorem: Let *a* and *b* be integers, and let *m* be a positive integer.

Then $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Theorem: Let *a* and *b* be integers, and let *m* be a positive integer.

Then $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

 $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Proof: Let m be a positive integer, $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Then, b = a + xm and d = c + ym. So, b - xm = a and d - ym = c. Therefore,

$$a + c = (b - xm) + (d - ym)$$

$$a + c = (b + d) - xm - ym$$

$$a + c = (b + d) + m(-x - y)$$

Hence, $a + c \equiv b + d \pmod{m}$ since (-x - y) is an integer.

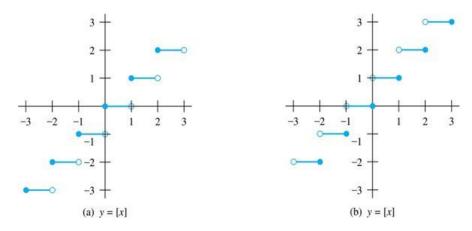
Def: The floor function assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by LxJ.

Def: The floor function assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by LxJ.

Def: The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x \rceil$.

Def: The floor function assigns to the real number x the largest integer that is less than or equal to x. The value of the floor function at x is denoted by LxJ.

Def: The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x. The value of the ceiling function at x is denoted by $\lceil x \rceil$.



Properties of Floor and Ceiling Functions (n is an integer, x is a real number):

 $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$

 $\lceil x \rceil = n$ if and only if $n - 1 < x \le n$

Properties of Floor and Ceiling Functions (n is an integer, x is a real number):

 $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$

 $\lceil x \rceil = n$ if and only if $n - 1 < x \le n$

 $\lfloor x \rfloor = n$ if and only if $x - 1 < n \le x$

 $\lceil x \rceil = n$ if and only if $x \le n < x + 1$

Properties of Floor and Ceiling Functions (*n* is an integer, *x* is a real number):

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

Properties of Floor and Ceiling Functions (*n* is an integer, *x* is a real number):

$$X - 1 < \lfloor X \rfloor \le X \le \lceil X \rceil < X + 1$$

$$\lfloor -X \rfloor = -\lceil X \rceil$$

$$\lceil -\chi \rceil = -\lfloor \chi \rfloor$$

Properties of Floor and Ceiling Functions (*n* is an integer, *x* is a real number):

$$X - 1 < \lfloor X \rfloor \le X \le \lceil X \rceil < X + 1$$

$$\lfloor -\chi \rfloor = -\lceil \chi \rceil$$

$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$\lfloor x + n \rfloor = \lfloor x \rfloor + n$$

$$\lceil x + n \rceil = \lceil x \rceil + n$$