
CMSC 330: Organization of Programming

Languages

Reference Counting

and Interior Mutability

CMSC330 Spring 2021
Copyright © 2021 Michael Coblenz and Michael Hicks, the University of

Maryland. Some material based on https://doc.rust-lang.org/book/second-

edition/index.html
1

https://doc.rust-lang.org/book/second-edition/index.html

Rust Ownership and Mutation

• Recall Rust ownership rules

– Each value in Rust has a variable that’s called its owner; there can be

only one

– When the owner goes out of scope, the value will be dropped

• Recall Rust mutability rules

– Mutation can occur only through mutable variables (e.g., the owner) or

references

– Rust permits only one borrowed mutable reference (and no immutable

ones at the same time)

2

But: Mutation and Sharing is Useful

• Example: a simple spreadsheet

struct CellStyle { fontSize: f64 }

struct Cell { style: CellStyle }

struct Table { cells: [Cell; 128] }

– So: a Table owns its Cells

• But: a format inspector needs to read and write the

cell data

– Ensuring only one borrowed mutable reference would

be awkward

– Easier if the inspector has its own reference

3

Another Example

• Suppose you have a multiplayer chess game

– Local data structures record the board state

– Maybe the board is owned by the window that contains it

• What happens when a new move comes in from the network?

– That’s handled by a different software component, not the window

• Simplest design is to have multiple (mutable) references to the board

– But Rust doesn't allow that

4

Relaxing Rust's Restrictions

• Architecturally, designating one owner that all accesses must go

through can be awkward

– We might end up wanting shared mutable access to the owner!

• Rust provides APIs by which you can get around the compiler-

enforced restrictions against multiple mutable references

– Use reference counting to manage lifetimes safely

– Track borrows at run-time to overcome limited compiler analysis

– Discipline is called interior mutability

– But: extra checks at space and time overhead; some previous compile-

time failures now occur at run-time

– Also a pain to program: Experimental GcRef to ease this

5

Multiple Pointers to a Value

• What’s wrong with this code?

– Box::new takes ownership of its argument, so the second

Box::new(a) call fails since a is no longer the owner

• How to allow something like this code?

– Problem: Managing lifetime

6

fn main() {

let a = Cons(5,

Box::new(Cons(10,

Box::new(Nil))));

let b = Cons(3, Box::new(a));

let c = Cons(4, Box::new(a));//fails

}

enum List {

Nil,

Cons(i32,Box<List>)

}

Managing Lifetimes Dynamically

• Benefit of ownership: compiler knows when to free memory
{

let nil_box = Box::new(List::Nil);

// free memory HERE (nil_box is going out of scope)

}

• Suppose Box didn't own its data:

let nil_box = Box::new(List::Nil);

let one_list = List::Cons(1, nil_box);

{

let two_list = List::Cons(2, nil_box);

// two_list is going out of scope; free nil_box too?

}

• (Box does own its data so the above pattern is not allowed.)

7

enum List {

Nil,

Cons(i32,Box<List>)

}

error[E0382]: use of moved value:
`nil_box`

Rc<T>: Multiple Owners, Dynamically

• This is a smart pointer that associates a counter with the underlying

reference

• Calling clone copies the pointer, not the pointed-to data, and bumps

the counter by one

– By convention, call Rc::clone(&a) rather than a.clone(), as a

visual marker for future performance debugging
• In general, calls to x.clone() are possible issues

• Calling drop reduces the counter by one

• When the counter hits zero, the data is freed

8

Rc::clone “Shares” Ownership

• Rc associates a refCount with the value

• let x = Rc::new(42);

• let y = Rc::clone(x);

• let z = Rc::clone(x);

9

42

valrefCount

stack (for example) heap

does heap allocation, like Box::new, but uses reference counting

clone() increments reference count

clone() increments reference count

123

Lists with Sharing

10

enum List {

Nil,

Cons(i32,Rc<List>)

}

use List::{Cons, Nil};

fn main() {

let a = Rc::new(Cons(5,

Rc::new(Cons(10,

Rc::new(Nil)))));

let b = Cons(3, Rc::clone(&a));

let c = Cons(4, Rc::clone(&a));//ok

}

Nb. Rc::strong_count returns the current ref count

Reference Counting: Summary

• To create: let r = Rc::new(...);

• To copy a pointer: let s = Rc::clone(&r);

– Increments the reference count

• To move a reference: let t = s;

– Does not increment reference count; s no longer the owner

• To free is automatic: drop is called when variables go out of scope,

reducing the count; freed when 0

• See docs:

– https://doc.rust-lang.org/book/ch15-04-rc.html

– https://doc.rust-lang.org/std/rc/index.html

11

https://doc.rust-lang.org/book/ch15-04-rc.html
https://doc.rust-lang.org/std/rc/index.html

Quiz 1

fn print_refcount(r: Rc<i32>) {

println!("{}", Rc::strong_count(&r));

}

fn main() {

let forty_two = Rc::new(42);

print_refcount(forty_two);

{

let v = Rc::clone(&forty_two);

print_refcount(v); // What does this print?

}

}

12

A. 0

B. 1

C. 2

D. This code doesn't compile

Quiz 1

fn print_refcount(r: Rc<i32>) {

println!("{}", Rc::strong_count(&r));

}

fn main() {

let forty_two = Rc::new(42);

print_refcount(forty_two);

{

let v = Rc::clone(&forty_two);

print_refcount(v); // What does this print?

}

}

13

A. 0

B. 1

C. 2

D. This code doesn't compile

error[E0382]: borrow of moved value: `forty_two`

--> src/main.rs:46:27

|

43 | let forty_two = Rc::new(42);

| --------- move occurs because

`forty_two` has type `std::rc::Rc<i32>`, which

does not implement the `Copy` trait

Quiz 2

fn print_refcount(r: &Rc<i32>) {

println!("{}", Rc::strong_count(r));

}

fn main() {

let forty_two = Rc::new(42);

{

let v = Rc::clone(&forty_two);

}

print_refcount(&forty_two); // What does this print?

}

14

A. 0

B. 1

C. 2

D. This code doesn't compile

Quiz 2

fn print_refcount(r: &Rc<i32>) {

println!("{}", Rc::strong_count(r));

}

fn main() {

let forty_two = Rc::new(42);

{

let v = Rc::clone(&forty_two);

}

print_refcount(&forty_two); // What does this print?

}

15

A. 0

B. 1

C. 2

D. This code doesn't compile

v went out of scope, so the reference count is 1 (once again).

Risks of Reference Counts

• Cyclic data is problematic

– Suppose the arrows are Rc references

– Reference counts are always positive; will never be deallocated!

• Can fix by using weak references (see docs)

• App must be prepared for referent to be revoked

• These are not required for project 5

16

Rc References: Mutation?

• With Rc I can now make multiple references and safely manage

lifetimes. Great! Let's see if I can mutate the reference's contents

let mut b = Rc::new(42);

*b = 43;

17

warning: variable does not need to be mutable
--> src/main.rs:4:9
|

4 | let mut b = Rc::new(42);
| ----^
| |
| help: remove this `mut`
|
= note: `#[warn(unused_mut)]` on by default

error[E0594]: cannot assign to data in an `Rc`
--> src/main.rs:5:5
|

5 | *b = 43;
| ^^^^^^^ cannot assign
|
= help: trait `DerefMut` is required to modify through a dereference,

but it is not implemented for `Rc<i32>`

https://doc.rust-lang.org/stable/error-index.html#E0594

Rc References: No Mutation!

error[E0594]: cannot assign to data in an `Rc`
--> src/main.rs:5:5
|

5 | *b = 43;
| ^^^^^^^ cannot assign
|
= help: trait `DerefMut` is required to modify through a dereference, but it is not implemented for

`Rc<i32>`

Rc only allows immutable contents

let mut b = Rc::new(42);

b = Rc::new(43); // fresh heap alloc

18

mut b means that I can reassign b, but not the object it references!

https://doc.rust-lang.org/stable/error-index.html#E0594

Digression: Cells are Mutable

• Cell<T>: like Box<T> but with mutable contents

pub fn set(&self, val: T)

• moves the data in

pub fn get(&self) -> T

• copies the data out

pub fn take(&self) -> T

• moves the data out, leaving Default::default()

pub fn get_mut(&mut self) -> &mut T

• requires a &mut self

19

Cell example (from Rust book)

use std::cell::Cell;

struct SomeStruct {

regular_field: u8,

special_field: Cell<u8>,

}

let my_struct = SomeStruct {

regular_field: 0,

special_field: Cell::new(1),

};

let new_value = 100;

// ERROR: `my_struct` is immutable

// my_struct.regular_field = new_value;

// WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,

// which can always be mutated

my_struct.special_field.set(new_value);

assert_eq!(my_struct.special_field.get(), new_value);

20

Cell Limitations

• Cell is great if

• you can copy the contents in and out

• and you have mutable references to the cell whenever you want

to modify the cell's contents

• and you can reason statically about lifetimes

• But what if you can't or don't?

• e.g., you want to access contents of cell without copying it out
(maybe it's a struct that's not Copy)

• Enter: RefCell

21

RefCell<T>

pub const fn new(value: T) -> RefCell<T>

• Looks similar…

pub fn borrow(&self) -> Ref<'_, T>

• This is a dynamic borrow

• "The borrow lasts until the returned Ref exits scope. Multiple immutable

borrows can be taken out at the same time…Panics if the value is

currently mutably borrowed. "

pub fn borrow_mut(&self) -> RefMut<'_, T>

• Note &self, not &mut self!

• "The borrow lasts until the returned RefMut or all RefMuts derived from

it exit scope. The value cannot be borrowed while this borrow is active."

Ref and RefMut are only for use with RefCell

22

Ref<T> vs. &T

• Both Ref<T>, returned by borrow*, and &T, implement Deref

• Code that uses them will be similar

&T

let x = 42;

let r = &x;

assert_eq!(*r, 42);

Ref<T>

let cell = RefCell::new(42);

let cell_ref : Ref<i32> = cell.borrow();

assert_eq!(*cell_ref, 42);

23

Static vs. Dynamic Borrow Tracking

• &T an d &mut T: static (compile-time) tracked of borrows

• RefCell<T>::borrow*: dynamic (run-time) tracked of borrows

pub fn borrow(&self) -> Ref<'_, T>

pub fn borrow_mut(&self) -> RefMut<'_, T>

– Ref<'_, T>, RefMut<'_, T> implement dynamic tracking

of outstanding, borrowed references

– If borrow_mut() with an outstanding Ref, panic!

• Static tracking is better if you can make it work

• no run time overhead; earlier bug detection

24

How Does Dynamic Borrowing Work?

• Each RefCell has a borrow count to track outstanding Refs and

RefMuts for that RefCell

• RefCell borrow and borrow_mut increment the count

• When a Ref (or RefMut) goes out of scope, Rust calls drop(),

which decrements the borrow count

use std::cell::RefCell;

let c = RefCell::new(5); // imm_count=0

let m = c.borrow(); // imm_count=1

let b = c.borrow_mut(); // panic!

25

Shared Mutable Data

• Back to the beginning: We were looking for a way to have shared,
mutable data. How do we do it? Use Rc<RefCell<T>>

• The RefCell permits mutating T (at risk of run-time borrow errors)

• Rc permits sharing, e.g., within a data structure

• Note: Rc<RefCell<u32>> has two counts:

• Reference count for Rc (should this RefCell be deallocated?)

• Incremented via Rc::clone()

• Dynamic version of lifetime

• Borrow count for RefCell (are borrow(), borrow_mut() safe?)

• Incremented via RefCell borrow and borrow_mut

• Dynamic version of borrow checking

26

Quiz 3

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

27

Quiz 3

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

28

error[E0596]: cannot borrow `m` as mutable, as it is not declared as mutable
--> src/main.rs:10:10
|

9 | let m = (*r1).borrow_mut();
| - help: consider changing this to be mutable: `mut m`

10 | *m = 43;
| ^ cannot borrow as mutable

https://doc.rust-lang.org/stable/error-index.html#E0596

Quiz 3

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

29

borrow_mut() returns a DerefMut
DerefMut:

pub fn deref_mut(&mut self) -> &mut Self::Target

To mutate the referenced value, we need a mutable DerefMut

https://doc.rust-lang.org/std/ops/trait.Deref.html#associatedtype.Target

Quiz 4

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let mut m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

30

Quiz 4

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let mut m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

31

m’s mutable borrow of the RefCell is still outstanding when borrow() is invoked.

Quiz 5

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

{

let mut m = (*r1).borrow_mut();

*m = 43;

}

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

32

Quiz 5

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

{

let mut m = (*r1).borrow_mut();

*m = 43;

}

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

33

Summary

• From the book [1]:

• Rc<T> enables multiple owners of the same data; Box<T> and

RefCell<T> have single owners.

• Box<T> allows immutable or mutable borrows checked at

compile time; Rc<T> allows only immutable borrows checked at

compile time; RefCell<T> allows immutable or mutable borrows

checked at runtime.

• Because RefCell<T> allows mutable borrows checked at

runtime, you can mutate the value inside the RefCell<T> even

when the RefCell<T> is immutable.

34

[1] https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

Additional examples: https://doc.rust-lang.org/rust-by-example/std/rc.html

https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

Garbage collection

• Assuming you need shared, mutable references, could use Rc:

+ Free memory ASAP

- Have to store reference count

- Have to manually increment count with clone()

- Manual cycle management

+/- Manage mutability yourself

• Garbage collection (like Java):

- Free memory later (when?)

+ Everything is automatic (almost…), easier to program

- Memory and performance cost

35

Example

let mut x = GcRef::new(42);

let mut y = x;

*x = 43;

*y = 44;

36

42

x y

4344

GcRef<T> and Mutability

• Can always make a GcRef that allows mutation

• Like "automatic" interior mutability

#[derive(Trace, Finalize)]
pub struct IntContainer {

n: i32,
}

pub fn test() {

let c1 = GcRef::new(IntContainer{n: 42});
c1.n = 47; // ERROR: c1 is immutable. BUT...

let mut c2 = c1; // GcRef is Copy, so this makes an alias
c2.n = 47; // Allowed because c2 is mut
assert_eq!(c1.n, 47); // passes!

}

37

GcRef Versatility

• Can use GcRef even if you don't need mutability

• Can use GcRef even if you don't need multiple references

• Performance, memory cost are low (but present)

• GcRef<T> can replace:

• Rc<RefCell<T>>

• Rc<T>

• Note that GcRef is experimental

38
GcRef documentation: https://crates.io/crates/bronze_gc

GC considerations (1)

• Garbage collection requires tracing to find live objects
#[derive(Trace, Finalize)]
pub struct Foo { ... }

• No dynamic ownership checks. This allows "surprise" mutation

39

Rust references
let mut x = Foo::new();

// suppose x satisfies property P now

let mut y = Bar::new(x);

y.baz();

x.foo(); // error: x was moved

GcRef
let mut x = GcRef::new(Foo::new());

// suppose x satisfies property P now

let mut y = GcRef::new(Bar::new(x));

y.baz();

x.foo();

// x may no longer satisfy P

// because baz() mutated it!

GC considerations (2)

• Less verbose (avoid clone(), Rc<RefCell<T>>)

• Don't have to worry about cycles

• As with RefCell, we violate the "only one mutable reference at a time"

rule

• Is it a good idea? We hope you'll tell us.

40

Back to the Beginning: Shared Table, Two Ways
struct CellStyle { fontSize: f64 }

struct Cell { style: CellStyle }

struct Table {cells: [Cell; 1]}

struct Document {

table: Rc<RefCell<Table>>,

}

struct Inspector {

table: Rc<RefCell<Table>>,

}

fn main() {

let table = Rc::new(

RefCell::new(Table::new()));

let inspector = Inspector {

table: table.clone()};

let document = Document {

table: table.clone()};

table.borrow().foo();

}

41

struct CellStyle { fontSize: f64 }

struct Cell { style: CellStyle }

struct Table {cells: [Cell; 1]}

struct Document {

table: GcRef<Table>,

}

struct Inspector {

table: GcRef<Table>,

}

fn main() {

let table = GcRef::new(

Table::new());

let inspector = Inspector {

table: table};

let document = Document {

table: table};

table.foo();

...

}

Rust with Rc/RefCell Rust with GcRef

A Quick Summary

• &mut: use when you only need one mutable reference

• Rc: reference-counted, shared reference to the heap

• RefCell/Cell: mutable contents even when immutable

• Borrowing via a special Ref value, which ensures that Rust's

borrow checking rules are followed dynamically

• Combine with Rc for shared mutability

• Ref/RefMut: only used for accessing RefCell.

• GcRef: garbage-collected references to mutable heap locations

• Can only mutate through mut GcRef, but can always copy a

GcRef to get a mut GcRef

42

Conclusions

• Ideally, design Rust programs so each value has one owner

• But that's not always possible

• Even when it is, those designs may have other costs

• When necessary, use Rc, RefCell, and GcRef to relax Rust's static

constraints

• Part of a programming discipline called interior mutability.

• With great power comes great responsibility!

43

