
CMSC 330: Organization of Programming
Languages

Lets, Tuples, Records

1CMSC 330 - Spring 2021

2

Let Expressions

• Syntax
– let x = e1 in e2
– x is a bound variable
– e1 is the binding expression
– e2 is the body expression

• let expressions bind local variables
– Different from let definitions, which are at the top-level

CMSC 330 - Spring 2021

Let Expressions
• Syntax

– let x = e1 in e2

• Evaluation
– Evaluate e1 to v1
– Substitute v1 for x in e2

• yielding new expression e2 ’
– Evaluate e2’ to v2, the final result

3

Example
let z = 3+4 in 3*z

(evaluate e1)
Ø let z = 7 in 3*z

(substitute for var z in e2)
Ø 3*7

(compute the final result)
Ø 21

CMSC 330 - Spring 2021

e1 e2x

Let Expressions
• Syntax

– let x = e1 in e2

• Type checking

4

Example
What is the type of let z = 3+4 in 3*z ?

• 3+4 : int
• Assuming z : int, we have 3*z : int
• So the type of let z = 3+4 in 3*z is int

Let Expressions
• Syntax

– let x = e1 in e2

• Type checking
– If e1 : t1 and
– If assuming x : t1 implies e2 : t
– Then (let x = e1 in e2) : t

5

Example
What is the type of let z = 3+4 in 3*z ?

• 3+4 : int
• Assuming z : int, we have 3*z : int
• So the type of let z = 3+4 in 3*z is int

6

Let Definitions vs. Let Expressions

• At the top-level, we write
– let x = e;; (* no in e2 part *)
– This is called a let definition, not a let expression

• Because it doesn’t, itself, evaluate to anything

• Omitting in means “from now on”:
let pi = 3.14;;

(* pi is now bound in the rest of the top-level scope *)

CMSC 330 - Spring 2021

7

Top-level expressions

• We can write any expression at top-level, too
– e;;
– This says to evaluate e and then ignore the result

• Equivalent to let _ = e;;
• Useful when e has a side effect, such as reading/writing a file,

printing to the screen, etc.

• When run, outputs 42 to the screen

let x = 37;;
let y = x + 5;;
print_int y;;
print_string "\n";;

CMSC 330 - Spring 2021

8

Let Expressions: Scope
• In let x = e1 in e2, var x is not visible outside of e2

let pi = 3.14 in pi *. 3.0 *. 3.0;;
print_float pi;;

bind pi (only) in body of let
(which is pi *. 3.0 *. 3.0)error: pi not bound

CMSC 330 - Spring 2021

Binding in other languages

• Compare to similar usage in Java/C

9

{
float pi = 3.14;

pi * 3.0 * 3.0;
}
pi; /* pi unbound! */

CMSC 330 - Spring 2021

let pi = 3.14 in pi *. 3.0 *. 3.0;;
print_float pi;; (* pi unbound! *)

• In let x = e1 in e2, var x is not visible outside of e2

10

Examples – Scope of Let bindings

• x;;
– (* Unbound value x *)

• let x = 1 in x + 1;;
– (* 2 *)

• let x = x in x + 1;;
– (* Unbound value x *)

CMSC 330 - Spring 2021

11

Examples – Scope of Let bindings

• let x = 1 in x + 1 + x ;;
– (* 3 *)

• (let x = 1 in x + 1) ;;
x;;
– (* Unbound value x *)

• let x = 4 in (let x = x + 1 in x) ;;
– (* 5 *)

()

CMSC 330 - Spring 2021

12

Nested Let Expressions

• Uses of let can be nested
(last example on prev. slide)
– Nested bound variables (pi

and r) not visible outside

• Similar scoping possibilities
C and Java

float res;
{ float area;
{ float pi = 3.14
float r = 3.0;
area = pi * r * r;

}
res = area / 2.0;

}

let res =
(let area =
(let pi = 3.14 in
let r = 3.0 in
pi *. r *. r) in

area /. 2.0);;

CMSC 330 - Spring 2021

13

Nested Let Style: Generally Avoid

• Sometimes a nested
binding can be rewritten
in a more linear style
– Easier to understand

• Can go too far:
namespace pollution
– Avoiding adding

unnecessary variable
bindings to top-level

let res =
(let area =
(let pi = 3.14 in
let r = 3.0 in
pi *. r *. r) in

area /. 2.0);;

let res =
let pi = 3.14 in
let r = 3.0 in
let area = pi *. r *. r in
area /. 2.0;;

let pi = 3.14;;
let r = 3.0;;
let area = pi *. r *. r;;
let res = area /. 2.0;;

CMSC 330 - Spring 2021

14

Let Expressions in Functions

• You can use let inside of functions for local vars

– And you can use many lets in sequence

let area r =
let pi = 3.14 in
pi *. r *. r

let area d =
let pi = 3.14 in
let r = d /. 2.0 in
pi *. r *. r

CMSC 330 - Spring 2021

15

Shadowing Names

• Shadowing is rebinding a name in an inner scope to have
a different meaning
– May or may not be allowed by the language

C
int i;

void f(float i) {
{
char *i = NULL;
...

}
} OCaml

let x = 3;;
let g x = x + 3;;

Java
void h(int i) {
{
float i; // not allowed
...

}
}

CMSC 330 - Spring 2021

Shadowing, by the Semantics
• What if e2 is also a let for x ?

– Substitution will stop at the e2 of a shadowing x

16

Example
let x = 3+4 in let x = 3*x in x+1
Ølet x = 7 in let x = 3*x in x+1
Ølet x = 3*7 in x+1
Ølet x = 21 in x+1
Ø21+1
Ø22

Will not be substituted,
since it is shadowed
by the inner let

CMSC 330 - Spring 2021

Shadowing (of Locals) Discouraged

17

• You can use shadowing to simulate update (mutation)

• But avoiding shadowing is clearer
– With no shadowing, if you see a variable x, you know it hasn’t

been “changed,” no matter where it appears
– If you want to “update” n, use a new name n1, n’, etc.

let rec f x n =
if x = 0 then 1
else
let x = x - 1 in (* shadowed *)
n * (f x n)

CMSC 330 - Spring 2021

Quiz 1
Which of these is not an expression that
evaluates to 3?

A. let x=2 in x+1
B. let x=3 in x

C. let x=3

D. 3

18CMSC 330 - Spring 2021

Quiz 1
Which of these is not an expression that
evaluates to 3?

A. let x=2 in x+1
B. let x=3 in x

C. let x=3 ---> not an expression
D. 3

19CMSC 330 - Spring 2021

20

Quiz 2: What does this evaluate to?

let x = 2 in
x = 3

A. 3
B. 2

C. true
D. false

CMSC 330 - Spring 2021

21

Quiz 2: What does this evaluate to?

let x = 2 in
x = 3

A. 3
B. 2

C. true
D. false

CMSC 330 - Spring 2021

This expression is
checking whether
x is equal to 3

A. 8
B. 11

C. 13
D. 14

let y = 3 in
let x = y+2 in
let y = 6 in
x+y

22

Quiz 3: What does this evaluate to?

CMSC 330 - Spring 2021

A. 8
B. 11

C. 13
D. 14

let y = 3 in
let x = y+2 in
let y = 6 in
x+y

23

Quiz 3: What does this evaluate to?

CMSC 330 - Spring 2021

let Specializes match

More general form of let allows patterns:
• let p = e1 in e2

– where p is a pattern. If e1 fails to match that pattern
then an exception is thrown

This pattern form of let is equivalent to
• match e1 with p -> e2

Examples
• let [x] = [[1]] in 1::x (* evals to [1;1] *)
• let h::_ = [1;2;3] in h (* evaluates to 1 *)

• let () = print_int 5 in 3 (* evaluates to 3 *)

24CMSC 330 - Spring 2021

25

Tuples

• Constructed using (e1, …, en)
• Deconstructed using pattern matching

– Patterns involve parens and commas, e.g., (p1, p2, …)

• Tuples are similar to C structs
– But without field labels
– Allocated on the heap

• Tuples can be heterogenous
– Unlike lists, which must be homogenous
– (1, ["string1";"string2"]) is a valid tuple

CMSC 330 - Spring 2021

26

Tuple Types

• Tuple types use * to separate components
– Type joins types of its components

• Examples
– (1, 2) :
– (1, "string", 3.5) :
– (1, ["a"; "b"], 'c') :
– [(1,2)] :
– [(1, 2); (3, 4)] :
– [(1,2); (1,2,3)] :

CMSC 330 - Spring 2021

27

Tuple Types

• Tuple types use * to separate components
– Type joins types of its components

• Examples
– (1, 2) :
– (1, "string", 3.5) :
– (1, ["a"; "b"], 'c') :
– [(1,2)] :
– [(1, 2); (3, 4)] :
– [(1,2); (1,2,3)] :

int * int
int * string * float
int * string list * char
(int * int) list
(int * int) list
error

Because the first list element has
type int * int, but the second has
type int * int * int – list elements
must all be of the same type

CMSC 330 - Spring 2021

28

Pattern Matching Tuples
let plusThree t =
match t with
(x, y, z) -> x + y + z;;

plusThree : int*int*int -> int = <fun>

let plusThree’ (x, y, z) = x + y + z;;
plusThree’ : int*int*int -> int = <fun>

let addOne (x, y, z) = (x+1, y+1, z+1);;
addOne : int*int*int -> int*int*int = <fun>

plusThree (addOne (3, 4, 5));;
- : int = 15

Remember, semicolon for lists, comma for tuples
• [1, 2] = [(1, 2)] which is a list of size one
• (1; 2) Warning: This expression should have type unit

CMSC 330 - Spring 2021

30

Tuples Are A Fixed Size
• This OCaml definition

– let foo x = match x with
(a, b) -> a + b

| (a, b, c) -> a + b + c

has a type error. Why?

• Tuples of different size have different types
– (a, b) has type: 'a * 'b
– (a, b, c) has type: 'a * 'b * 'c
– Patterns in the same match must have the same type

CMSC 330 - Spring 2021

A. (3,0)
B. (2,0)
C. 3
D. type error

let get a b = (a+b,0) in
get 1 2

31

Quiz 4: What does this evaluate to?

CMSC 330 - Spring 2021

A. (3,0)
B. (2,0)
C. 3
D. type error

let get a b = (a+b,0) in
get 1 2

32

Quiz 4: What does this evaluate to?

CMSC 330 - Spring 2021

A. 3
B. type error
C. 2
D. 1

let get (a,b) y = a+y in
get (2,1) 1

33

Quiz 5: What does this evaluate to?

CMSC 330 - Spring 2021

A. 3
B. type error
C. 2
D. 1

34

Quiz 5: What does this evaluate to?

CMSC 330 - Spring 2021

let get (a,b) y = a+y in
get (2,1) 1

35

Records
• Records: identify elements by name

– Elements of a tuple are identified by position

• Define a record type before defining record values

• Define a record value

type date = { month: string; day: int; year: int }

let today = { day=16; year=2017; month=“f”^“eb” };;

today : date = { day=16; year=2017; month=“feb” };;

CMSC 330 - Spring 2021

36

Destructing Records

• Access by field name or pattern matching

• Notes:
– In record patterns, you can skip or reorder fields
– You can use the field name as the bound variable

type date = { month: string; day: int; year: int }
let today = { day=16; year=2017; month=“feb” };;

print_string today.month;; (* prints feb *)
(* patterns *)
let { month=_; day=d } = today in
let { year } = today in
let _ = print_int d in (* prints 16 *)
print_int year;; (* prints 2017 *)

CMSC 330 - Spring 2021

A. point -> int list
B. int -> int list
C. point -> point list
D. point -> int list list

type point = {x:int; y:int}

let shift { x=px } = [px]::[]

37

Quiz 6: What is the type of shift?

CMSC 330 - Spring 2021

A. point -> int list
B. int -> int list
C. point -> point list
D. point -> int list list

type point = {x:int; y:int}

let shift { x=px } = [px]::[]

38

Quiz 6: What is the type of shift?

CMSC 330 - Spring 2021

