CMSC 330: Organization of Programming
Languages

Property-Based Random Testing

CMSC 330 — Spring 2021

How do Test a Program?

. A code tester walks into a bar
* Orders a beer
* Orders ten beers
* Orders 2.15 billion beers
* Orders -1 beer
* Orders a nothing
* Orders a lizard
* Tries to leave without paying

CMSC 330 - Spring 2021

What is in the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

- Run your code on a 20-year old computer

CMSC 330 - Spring 2021

What is in the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

- Run your code on a 20-year old computer

. NO. We don’t do that

CMSC 330 - Spring 2021

Let’s test rev (list reverse) ...

CMSC 330 - Spring 2021

let rec rev 1 =
match 1 with
[1 -> []
| h::t -> rev t @ [h]

Let’s test rev (list reverse) ... with a unit test

let rec rev 1 =
match 1 with
[1 -> []
| h::t -> rev t @ [h]

let test reverse
rev [1l;2;3] [3;2;1]

/1T X

Function Sample Expected
under test argument result

CMSC 330 — Spring 2021

Unit Testing

let rec rev 1 =
match 1 with
[1 -> []
| h::t -> rev t @ [h]

let test reverse
rev [1;2;3]

[3;2;1]

Difficult to write good unit tests
. Writing many tests can be tedious and time consuming
. Bug-finding power of many tests is similar

CMSC 330 — Spring 2021

Properties

Instead of unit tests on specific inputs and outputs, what
if we could test properties that hold for all inputs ?

let prop reverse 1
rev (rev 1) =1

* |.e., reversing a list twice gives back the original list

In other words, each of the following evaluates to true
* prop reverse []

* prop reverse [1l; 2; 3]

* prop reverse [1.0; 2.22]

CMSC 330 — Spring 2021

Property-based Testing

is a framework that repeatedly generates random
iInputs, and uses them to confirm that properties hold

let prop reverse lw:\\\\\\\\
rev (rev 1) =1

Repeatedly
generate input 1
randomly
Confirm the
property holds for

the given input

CMSC 330 — Spring 2021 9

QCheck: Property-Based Testing for OCaml

. QCheck tests are described by
* A generator: generates random input
* A property: bool-valued function

true
Ger;'erate) ﬁfProperty Wfalse 4
Input | (input)? N,

CMSC 330 — Spring 2021

10

Setting Up QCheck

Install
opam install gcheck

Open the Qcheck module
open QCheck

in utop, before open QCheck
#require “gqcheck”

In dune file
(libraries qgcheck)

CMSC 330 - Spring 2021

11

Let’'s Test Our Property

let prop reverse 1 = rev (rev 1) =1

open QCheck; ;

let test =

Test.make ‘?——————”’___,,,——-Tést10001ﬁnes
~count:1000

~name:”reverse_test”

(list small int) . :int list arbitrary
N Generates a random int list

(fun x-> prop reverse x)ﬁ\\\\§\\\§
...and tests the property

CMSC 330 — Spring 2021 12

Let’s test properties of reverse...

let prop reverse 1 = rev (rev 1) =1

open Qcheck; ;
let test = Test.make ~count:1000 ~name:”reverse test”

(list small int) (fun x-> prop reverse x);;

e Run the test

QCheck runner.run tests ~verbose:true [test];;

[v] 1000 0 0 1000 / 1000 0.2s reverse_test

> 4

generated error fail (bass / total] time test name

success (ran 1 tests) \\

Test 1000 times

CMSC 330 — Spring 2021

13

Arbitrary Handles Random Inputs

An 'a arbitrary represents an "arbitrary" value of type 'a

It is used to describe how to

* generate random values

* shrink them (make counter-examples as small as possible)
* print them

small int: int arbitrary
list: 'a arbitrary -> 'a list arbitrary
triple: 'a arbitrary ->

'b arbitrary ->
'c arbitrary -> ('a * 'b * 'c) arbitrary

CMSC 330 — Spring 2021 14

Buggy Reverse

let rev 1 =1 (* returns the same list *)

The property did not catch the bug!

let prop reverse 1 = rev (rev 1) =1

A simple unit test would catch the bug

let test reverse = rev [1;2;3] = [3;2;1]

CMSC 330 — Spring 2021

Another Property

let prop reverse2 1l x 12 =
rev (11 @ [x] @ 12) = rev 12 @ [x] @ rev 11

rev [1;2]Q@[3]@[4;5] = rev [4;5] @ [3] @ rev [1;2]

let test = QCheck.Test.make ~count:1000
~name: "reverse test2"
(triple (list small int) small int (list small int))
(fun(11l,x,12)-> prop reverse2 11 x 12)1

:(int list * int * int list) arbitrary
Generates 11,x,12

QCheck runner.run tests [test];;
success (ran 1 tests)
- : int =0

CMSC 330 — Spring 2021 16

Lesson learned: Garbage in Garbage out

On two occasions | have been asked, —“Pray, Mr. Babbage,
if you put into the machine wrongfigures, will the right
answers come out?” In one case a member of the Upper,
and in the other a member of the Lower, House put this
guestion. | am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

— Charles Babbage, 1864

Bad generators and properties produce bad results.

CMSC 330 — Spring 2021 17

Another example: Let’s test delete...

let rec delete x 1 = match 1 with
[1 -> []
| (y::ys) -> if x y then ys
else y:: (delete x ys)

let prop delete x 1 =
not (List.mem x (delete x 1))

x Should not be a member if deleted.

CMSC 330 - Spring 2021

18

Testing delete...

let prop delete x 1 =
not (List.mem x (delete x 1))

let test = Test.make ~count:1000
~name : “delete test"

(pair small_iﬁt (list small int))
(fun(x,1) -> prop delete x 1 \\\\\\\\

Generate an int and an int list

QCheck runner.run tests [test];;

CMSC 330 — Spring 2021 19

Testing delete...

--- Failure --------- - - - - - ———— - -

Test reverse test failed (11 shrink steps):
(0, [0; 0])

failure (1 tests failed, 0 tests errored, ran 1 tests)
- : int =1

CMSC 330 — Spring 2021 20

Delete only deleted the first occurrence

No recursive

call!
/

let rec delete x 1 = match 1 w%:i)///
[1 -> []

| (y::ys) -> if x y then ys
else y:: (delete x ys)

&
delete 2 [2;2;3] = [2;3] /"\
N

CMSC 330 — Spring 2021 21

Property: is_sorted

. Whether a list is sorted in non-decreasing order

let rec is sorted 1lst =
match lst with
| [] -> true
| [h] -> true
| hl::(h2::t as t2) -> hl <= h2 && is sorted t2

CMSC 330 — Spring 2021

22

Arbitrary: The Detalils

type 'a arbitrary = {
gen: 'a Gen.t;
print: ('a -> string) option; (** printvalues *)
small: ('a -> int) option; (** size of example *¥)
shrink: 'a Shrink.t option; (™ shrink to smaller examples *)
collect: ('a -> string) option; (* map value to tag, and group by tag *)
stats : 'a stat list; (™ statistics to collect and print *)

CMSC 330 — Spring 2021 23

Build an Arbitrary

make
?print:'a Print.t ->
?small: ('a -> int) ->
?shrink:'a Shrink.t ->
?collect: ('a -> string) ->

?stats:'a stat list -> 'a Gen.t -> 'a arbitrary

Build an arbitrary that generates random ints

make (Gen.int);;

- : int arbitrary =

{gen = <fun>; print = None; small = None; shrink = None;
collect = None;stats = []}

CMSC 330 — Spring 2021 24

Random Generator

'a QCheck.Gen.t is a function that takes in a Pseudorandom
number generator, uses it to produce a random value of type ‘a.

For example, QCheck .Gen.int generates random integers, while
QCheck .Gen. string generates random strings. Let us look at a

few more of them:

module Gen :

CMSC 330 - Spring 2021

sig
val
val
val
val
val
val

end

int : int t

small int : int t

int range : int -> int -> int t

list : 'a t -> 'a list t

string : ?gen:char t -> string t

small string : ?gen:char t -> string t

25

Sampling Generators

Gen.generatel Gen.small int
-

Gen.generate ~n:10 Gen.small int

int list =[6,;8,;78;87;9;9,;6,;2;3,;27]

CMSC 330 - Spring 2021

26

Sampling Generators

« (Generate 5 int lists
let t = Gen.generate ~n:5 (Gen.list Gen.small int);;

val t : int list list =[[4;2;7;8;..1;..;[0,2,;97]]

« Generate two string lists
let s = Gen.generate ~n:2 (Gen.list Gen.string);;

val s : string list list =[[“A”;”B”;..]1; [“C”,;”d”;..]11]

CMSC 330 — Spring 2021 27

Combining Generators

val frequency: (int * ‘a) list ->‘a ‘a Gen.t
« Generate 80% letters, and 20% space
Gen.generate ~n:10
(Gen.frequency [(1,Gen.return ' ') ;

(3,Gen.char_range 'a' 'z')1]);;

— . char list=[|i|;' l;'j';'h';lt';' ';l l;' ';'kl;lb']

CMSC 330 - Spring 2021

28

Shrinking

Our Delete example without shrinking...

--- Failure --------—-—— - ————————

Test anon _test 1 failed (0 shrink steps):

(7, [0; 4; 3; 7; 0; 2; 7; 1; 1; 2])

...and with: Where’s the bug?

--- Failure ---------- - - - - ———-—————————————

Test anon _test 1 failed (8 shrink steps):

(2, [2; 2])

CMSC 330 — Spring 2021

Shrinking

How do we go from this...

(7, [0; 4; 3; 7; 0; 2; 7; 1; 1; 2])

...to this?
(2, [2; 2]) List of "smaller” inputs
\]
* Given a shrinking function £ ::‘a -> ‘a list
* And a counterexample x :: ‘a

Try all elements of (£ x) to find another failing input...

Repeat until a minimal one is found.

CMSC 330 - Spring 2021

30

Shrinkers

A shrinker attempts to cut a counterexample down to
something more comprehensible for humans

A QCheck shrinker is a function from a counterexample to an
iterator of simpler values:

'a Shrink.t = 'a -> 'a QCheck.Iter.t

CMSC 330 — Spring 2021

31

Shrinkers and iterators in QCheck

Given a counterexample, QCheck calls the iterator
to find a simpler value, that is still a
counterexample

Some input

Input g Iter.find None
» Shrink (fun i -> not (Prop 1i)) >
N Print

counterexample
After a successful shrink, the shrinker is called again.

CMSC 330 — Spring 2021 32

Shrinkers

QCheck’s Shrink contains a number of builtin shrinkers:

Shrink.nil performs no shrinking
Shrink.int for reducing integers
Shrink.char for reducing characters
Shrink.string for reducing strings
Shrink.list for reducing lists
Shrink.pair for reducing pairs
Shrink.triple forreducing triples

CMSC 330 - Spring 2021

Printers

Type of printers

type ‘a printer = ‘a -> string

Printers for primitives:

* wval pr bool : bool printer
* val pr int : int printer
* val pr list : ‘a printer ->

. ‘a list printer

CMSC 330 - Spring 2021

34

Summary

Properties: Tests over many inputs, not just one

Property-based Testing (PBT): Randomly generate many
iInputs, and check that properties hold on them

* |If not, shrink failing input before presenting to user

QCheck is PBT for OCam|

* Provides means to generate random inputs

* Provides means to shrink and print inputs

* Automates generation, testing, shrinking, presentation

CMSC 330 — Spring 2021 35

