The story so far, and what’s next

- **Goal:** Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R’s *language*

- **Approach to come:** Convert R to a *finite automaton* FA and see whether s is accepted by FA
 - Details: Convert R to a *nondeterministic FA* (NFA), which we then convert to a *deterministic FA* (DFA),
 - which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic Finite Automata (DFA)**
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - (Almost) all examples so far

- **Nondeterministic Finite Automata (NFA)**
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - A DFA is a specific kind of NFA

\[\varepsilon \text{-transition} \]
DFA for \((a|b)^*abb\)
NFA for $(a|b)^*abb$

- **ba**
 - Has paths to either S_0 or S_1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S_3, so accepts string
NFA for (ab|aba)*

- aba
- ababa
 - Has paths to states S0, S1
 - Need to use ε-transition
NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which string is **NOT** accepted by this NFA?

A. ab
B. abaa
C. abab
D. abaab
Quiz 1: Which string is NOT accepted by this NFA?

A. ab
B. abaa
C. abab
D. abaab
Formal Definition

- **A deterministic finite automaton (DFA)** is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions
 - What's this definition saying that \(\delta\) is?

- A DFA accepts \(s\) if it *stops* at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$
- $\delta =$

<table>
<thead>
<tr>
<th>symbol</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as $\{(S0,0,S0), (S0,1,S1), (S1,0,S0), (S1,1,S1)\}$
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("rejected\n"); return 0;
            default: printf("rejected\n"); return 0;
        }
        break;
        case 1: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\n': printf("accepted\n"); return 1;
            default: printf("rejected\n"); return 0;
        }
        break;
    }
    default: printf("unknown state; I'm confused\n");
    break;
}
```

CMSC 330 Spring 2021
Implementing DFAs (generic)

More generally, use generic table-driven DFA

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:

1. let \(q = q_0\)
2. while (there exists another symbol \(\sigma\) of the input string)
 - \(q := \delta(q, \sigma)\);
3. if \(q \in F\) then
 - accept
4. else reject
A **NFA** is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
- \(\Sigma, Q, q_0, F\) as with DFAs
- \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) specifies the NFA's transitions

An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA's start state to a final state.

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{(S1,a,S1), (S1,a,S2), (S2,\epsilon,S3)\}\)

CMSC 330 Spring 2021
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
 - Since S3 is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

NB. Both *transform* and *reduce* are historical terms; they mean “convert”
Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall $F =$ set of final states

Will define $<A>$ for base cases: σ, ε, \emptyset
 - Where σ is a symbol in Σ

And for inductive cases: AB, $A|B$, A^*
Reducing Regular Expressions to NFAs

- **Base case:** σ

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where
- Σ is the alphabet
- Q is set of states
- q_0 is starting state
- F is set of final states
- δ is transition relation

\[
<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})
\]
Reduction

- **Base case: \(\varepsilon \)**

 \[<\varepsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset) \]

- **Base case: \(\emptyset \)**

 \[<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset) \]

Recall: NFA is \((\Sigma, Q, q_0, F, \delta)\) where
- \(\Sigma\) is the alphabet
- \(Q\) is set of states
- \(q_0\) is starting state
- \(F\) is set of final states
- \(\delta\) is transition relation
Reduction: Concatenation

- **Induction:** AB

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Concatenation

- Induction: AB

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \]
\[<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\}) \]
Reduction: Union

- Induction: $A | B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: \(A|B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\)
- \(<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})\)
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\}$

CMSC 330 Spring 2021
Quiz 2: Which NFA matches a^*?
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
Recap

- Finite automata
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

Reducing RE to NFA

- Concatenation
- Union
- Closure
Reduction Complexity

- Given a regular expression A of size n...

 \[\text{Size} = \# \text{ of symbols} + \# \text{ of operations} \]

- How many states does $<A>$ have?

 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Reducing NFA to DFA

DFA ← NFA

can reduce

can reduce

RE
Why NFA → DFA

- DFA is generally more efficient than NFA

Language: (a|b)*ab
Why NFA \rightarrow DFA

- DFA has the same expressive power as NFAs.
 - Let language $L \subseteq \Sigma^*$, and suppose L is accepted by NFA $N = (\Sigma, Q, q_0, F, \delta)$. There exists a DFA $D = (\Sigma, Q', q'_0, F', \delta')$ that also accepts L. ($L(N) = L(D)$)

- NFAs are more flexible and easier to build. But DFAs have no less power than NFAs.

NFA \leftrightarrow DFA
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”
- Example

![Diagram of NFA and DFA]
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q_0, F_n, δ)
 - Output
 - DFA (Σ, R, r_0, F_d, δ)
 - Using two subroutines
 - ε-closure(δ, p) (and ε-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

- We say \(p \xrightarrow{ε} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(ε \)-transitions in \(δ \)
 - If \(\exists \ p, p_1, p_2, \ldots p_n, q \in Q \) such that
 - \(\{p,ε,p_1\} \in δ \)
 - \(\{p_1,ε,p_2\} \in δ \)
 - \(\ldots \)
 - \(\{p_n,ε,q\} \in δ \)

- **ε-closure\((δ, p) \)**
 - Set of states reachable from \(p \) using ε-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{ε} q \) according to \(δ \)
 - \(ε\)-closure\((δ, p) = \{ q \mid p \xrightarrow{ε} q \text{ in } δ \} \)
 - \(ε\)-closure\((δ, Q) = \{ q \mid p \in Q, p \xrightarrow{ε} q \text{ in } δ \} \)
 - Notes
 - \(ε\)-closure\((δ, p) \) always includes \(p \)
 - We write \(ε\)-closure\((p) \) or \(ε\)-closure\((Q) \) when \(δ \) is clear from context
ε-closure: Example 1

- **Following NFA contains**
 - \(p_1 \xrightarrow{\varepsilon} p_2 \)
 - \(p_2 \xrightarrow{\varepsilon} p_3 \)
 - \(p_1 \xrightarrow{\varepsilon} p_3 \)
 - Since \(p_1 \xrightarrow{\varepsilon} p_2 \) and \(p_2 \xrightarrow{\varepsilon} p_3 \)

- **ε-closures**
 - \(\varepsilon\text{-closure}(p_1) = \{ p_1, p_2, p_3 \} \)
 - \(\varepsilon\text{-closure}(p_2) = \{ p_2, p_3 \} \)
 - \(\varepsilon\text{-closure}(p_3) = \{ p_3 \} \)
 - \(\varepsilon\text{-closure}(\{ p_1, p_2 \}) = \{ p_1, p_2, p_3 \} \cup \{ p_2, p_3 \} \)
ε-closure: Example 2

- Following NFA contains
 - $p_1 \xrightarrow{\varepsilon} p_3$
 - $p_3 \xrightarrow{\varepsilon} p_2$
 - $p_1 \xrightarrow{\varepsilon} p_2$

 ➔ Since $p_1 \xrightarrow{\varepsilon} p_3$ and $p_3 \xrightarrow{\varepsilon} p_2$

- **ε-closures**
 - ε-closure(p_1) = $\{ p_1, p_2, p_3 \}$
 - ε-closure(p_2) = $\{ p_2 \}$
 - ε-closure(p_3) = $\{ p_2, p_3 \}$
 - ε-closure($\{ p_2, p_3 \}$) = $\{ p_2 \} \cup \{ p_2, p_3 \}$
ε-closure Algorithm: Approach

- **Input:** NFA \((\Sigma, Q, q_0, F_n, \delta)\), State Set \(R\)
- **Output:** State Set \(R'\)
- **Algorithm**

 Let \(R' = R\)

 Repeat

 Let \(R = R'\)

 Let \(R' = R \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}\)

 Until \(R = R'\)

This algorithm computes a fixed point
Calculate ε-closure(δ,\{p_1\})

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>{p_1}</td>
<td>{p_1}</td>
</tr>
<tr>
<td>{p_1}</td>
<td>{p_1, p_2}</td>
</tr>
<tr>
<td>{p_1, p_2}</td>
<td>{p_1, p_2, p_3}</td>
</tr>
<tr>
<td>{p_1, p_2, p_3}</td>
<td>{p_1, p_2, p_3}</td>
</tr>
</tbody>
</table>

Let $R' = R$
Repeat
 Let $R = R'$
 Let $R' = R \cup \{q | p \in R, (p, \varepsilon, q) \in \delta\}$
Until $R = R'$
Calculating move(p, σ)

- move(δ, p, σ)
 - Set of states reachable from p using exactly one transition on symbol σ
 - Set of states q such that \{p, σ, q\} ∈ δ
 - \(move(δ, p, σ) = \{ q \mid \{p, σ, q\} ∈ δ \}\)
 - \(move(δ, Q, σ) = \{ q \mid p ∈ Q, \{p, σ, q\} ∈ δ \}\)
 - i.e., can “lift” move() to a set of states Q
 - Notes:
 - \(move(δ, p, σ)\) is Ø if no transition \((p, σ, q) ∈ δ\), for any q
 - We write \(move(p, σ)\) or \(move(R, σ)\) when δ clear from context
move(p, σ) : Example 1

- Following NFA
 - Σ = { a, b }

- Move
 - move(p1, a) = { p2, p3 }
 - move(p1, b) = Ø
 - move(p2, a) = Ø
 - move(p2, b) = { p3 }
 - move(p3, a) = Ø
 - move(p3, b) = Ø

move({p1, p2}, b) = { p3 }
move(p, σ) : Example 2

Following NFA

- \(\Sigma = \{ a, b \} \)

Move

- move(p1, a) = \{ p2 \}
- move(p1, b) = \{ p3 \}
- move(p2, a) = \{ p3 \}
- move(p2, b) = \emptyset
- move(p3, a) = \emptyset
- move(p3, b) = \emptyset

\[
\text{move}\{\{p1,p2\},a\} = \{p2,p3\}
\]
NFA → DFA Reduction Algorithm ("subset")

- **Input** NFA (Σ, Q, q_0, F_n, δ), **Output** DFA (Σ, R, r_0, F_d, δ')
- **Algorithm**

 Let $r_0 = \varepsilon$-closure(δ,q_0), add it to R
 // DFA start state

 While \exists an unmarked state $r \in R$
 // process DFA state r

 Mark r
 // each state visited once

 For each $\sigma \in \Sigma$
 // for each symbol σ

 Let $E = \text{move}(\delta,r,\sigma)$
 // states reached via σ

 Let $e = \varepsilon$-closure(δ,E)
 // states reached via ε

 If $e \not\in R$
 // if state e is new

 Let $R = R \cup \{e\}$
 // add e to R (unmarked)

 Let $\delta' = \delta' \cup \{r, \sigma, e\}$
 // add transition $r \rightarrow e$ on σ

 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
 // final if include state in F_n
NFA \rightarrow DFA Example

- Start = ε-closure(δ,p1) = { {p1,p3} }
- R = { {p1,p3} }
- $r \in R = \{p1,p3\}$
- move(δ,\{p1,p3\},a) = {p2}
 - $e = \varepsilon$-closure(δ,\{p2\}) = {p2}
 - R = R \cup \{\{p2\}\} = { \{p1,p3\}, \{p2\} }
 - $\delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}$
- move(δ,\{p1,p3\},b) = \emptyset
NFA → DFA Example (cont.)

- \(R = \{ \{p1, p3\}, \{p2\} \} \)
- \(r \in R = \{p2\} \)
- \(\text{move}(\delta, \{p2\}, a) = \emptyset \)
- \(\text{move}(\delta, \{p2\}, b) = \{p3\} \)
 - \(e = \varepsilon\text{-closure}(\delta, \{p3\}) = \{p3\} \)
 - \(R = R \cup \{\{p3\}\} = \{ \{p1, p3\}, \{p2\}, \{p3\} \} \)
 - \(\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\} \)
NFA → DFA Example (cont.)

• \(R = \{ \{p1,p3\}, \{p2\}, \{p3\} \} \)
• \(r \in R = \{p3\} \)
• \(\text{Move}\{\{p3\},a\} = \emptyset \)
• \(\text{Move}\{\{p3\},b\} = \emptyset \)
• \(\text{Mark} \{p3\}, \text{exit loop} \)
• \(F_d = \{\{p1,p3\}, \{p3\}\} \)
 ➔ Since \(p3 \in F_n \)
• Done!
NFA \rightarrow DFA Example 2

- NFA

- DFA

\[R = \{ \{A\}, \{B, D\}, \{C, D\} \} \]
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equivalent to this NFA?
Actual Answer

NFA:

\[
p_0 \xrightarrow{a} p_1 \xrightarrow{b} p_2
\]

\[
p_0 \xrightarrow{\epsilon} p_1
\]

\[
p_1 \xrightarrow{a} p_0
\]

\[
p_1 \xrightarrow{b} p_2, p_0\]

\[
p_0 \xrightarrow{a} p_1 \xrightarrow{b} p_2, p_0 \xrightarrow{a} p_0
\]

\[
p_1 \xrightarrow{b} p_2, p_0 \xrightarrow{a} p_0
\]
NFA → DFA Example 3

NFA

\[
\begin{align*}
&\text{A} \xrightarrow{a} \text{B} \\
&\text{B} \xrightarrow{\epsilon} \text{D} \\
&\text{C} \xrightarrow{b} \text{E} \\
&\text{E} \xrightarrow{a} \text{A} \\
&\text{A} \xrightarrow{b} \text{C} \\
&\text{A} \xrightarrow{\epsilon} \text{E} \\
&\text{C} \xrightarrow{\epsilon} \text{B} \\
&\text{B} \xrightarrow{b} \text{D} \\
&\text{D} \xrightarrow{a} \text{B} \\
\end{align*}
\]

DFA

\[
\begin{align*}
&\{A, E\} \xrightarrow{a} \{B, D, E\} \\
&\{B, D, E\} \xrightarrow{b} \{C, D\} \\
&\{C, D\} \xrightarrow{b} \{E\} \\
&\{A, E\} \xrightarrow{a} \{A, E\} \\
\end{align*}
\]

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$
 Mark r
 For each $\sigma \in \Sigma$
 Let $E = \text{move}(\delta, r, \sigma)$
 Let $e = \varepsilon$-closure(δ, E)
 If $e \not\in R$
 Let $R = R \cup \{e\}$
 Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r | \exists s \in r \text{ with } s \in F_n\}$
Let \(r_0 = \varepsilon\text{-closure}(\delta,q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta,r,\sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta,E) \)

If \(e \not\in R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$
- Mark r
- For each $\sigma \in \Sigma$
 - Let $E = \text{move}(\delta, r, \sigma)$
 - Let $e = \varepsilon$-closure(δ, E)
 - If $e \notin R$
 - Let $R = R \cup \{e\}$
 - Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r | \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
</tr>
</tbody>
</table>
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r | \exists s \in r \text{ with } s \in F_n\} \)
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r | \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A,B,C}$</td>
<td>{B,C}</td>
<td></td>
</tr>
<tr>
<td>${B,C}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

//1

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \not\in R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let \(r_0 = \epsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \) \hspace{1cm} //1

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \epsilon\text{-closure}(\delta, E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon\text{-closure}(\delta, q_0)$, add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

Let $E = \text{move}(\delta, r, \sigma)$
Let $e = \varepsilon\text{-closure}(\delta, E)$
If $e \notin R$

Let $R = R \cup \{e\}$
Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \)

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \notin R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)
Let $r_0 = \varepsilon\text{-closure}(\delta, q_0)$, add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

\[\text{//0} \]

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon\text{-closure}(\delta, E)$

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists \ s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R.

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //0

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B, C}</td>
<td>{B, C}</td>
<td>{A, B, C}</td>
</tr>
<tr>
<td>{B, C}</td>
<td>{C}</td>
<td></td>
</tr>
<tr>
<td>{C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

Detailed NFA → DFA Example
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$
- Mark r
 - For each $\sigma \in \Sigma$ //1
 - Let $E = \text{move}(\delta, r, \sigma)$
 - Let $e = \varepsilon$-closure(δ, E)
 - If $e \not\in R$
 - Let $R = R \cup \{e\}$
 - Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detailed NFA → DFA Example

Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \) \hspace{1cm} //1

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \not\in R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists \ s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon$-closure(δ, E)

If $e \notin R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r | \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A,B,C}$</td>
<td>${B,C}$</td>
<td>${A,B,C}$</td>
</tr>
<tr>
<td>${B,C}$</td>
<td>${C}$</td>
<td>${B,C}$</td>
</tr>
<tr>
<td>${C}$</td>
<td>${C}$</td>
<td></td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon\text{-closure}(\delta, q_0)$, add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //1

Let $E = \text{move}(\delta, r, \sigma)$

Let $e = \varepsilon\text{-closure}(\delta, E)$

If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0) \), add it to \(R \)

While \(\exists \) an unmarked state \(r \in R \)

Mark \(r \)

For each \(\sigma \in \Sigma \) //1

Let \(E = \text{move}(\delta, r, \sigma) \)

Let \(e = \varepsilon\text{-closure}(\delta, E) \)

If \(e \not\in R \)

Let \(R = R \cup \{e\} \)

Let \(\delta' = \delta' \cup \{r, \sigma, e\} \)

Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td>{C}</td>
<td>{C}</td>
</tr>
</tbody>
</table>
Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

Let $E = \text{move}(\delta, r, \sigma)$
Let $e = \varepsilon$-closure(δ, E)
If $e \not\in R$

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>${A,B,C}$</td>
<td>${B,C}$</td>
<td>${A,B,C}$</td>
</tr>
<tr>
<td>${B,C}$</td>
<td>${C}$</td>
<td>${B,C}$</td>
</tr>
<tr>
<td>${C}$</td>
<td>${C}$</td>
<td>${C}$</td>
</tr>
</tbody>
</table>
Detailed NFA → DFA Example: Completed

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{B,C}</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>{B,C}</td>
<td>{C}</td>
<td>{B,C}</td>
</tr>
<tr>
<td>{C}</td>
<td>{C}</td>
<td>{C}</td>
</tr>
</tbody>
</table>

NFA

DFA
NFA \rightarrow DFA Example
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$
Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q, \sigma)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast
Closing the Loop: Reducing DFA to RE

DFA can reduce NFA can transform RE

DFA can transform RE

CMSC 330 Spring 2021
Reducing DFAs to REs

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

$$(0 + 1(0(1^*0))1)^*$$
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states

- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

J. Hopcroft, “An $n \log n$ algorithm for minimizing states in a finite automaton,” 1971
No need to split partition \{S, T, U, V\}

- All transitions on \(a\) lead to identical partition \(P_2\)
- Even though transitions on \(a\) lead to different states
Need to split partition \{S,T,U\} into \{S,T\}, \{U\}

- Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
- Transition on \(a\) from \(U\) lead to partition \(P_3\)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- DFA

- Initial partitions
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- Split partition? → Not required, minimization done
 - move(S,a) = T ∈ P2 – move(S,b) = R ∈ P1
 - move(T,a) = T ∈ P2 – move(T,b) = R ∈ P1
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- DFA

- Initial partitions
 - Accept: $\{ R \} = P_1$
 - Reject: $\{ S, T \} = P_2$

- Split partition?
 - Yes, different partitions for B
 - $\text{move}(S, a) = T \in P_2$ \quad \text{–} \quad \text{move}(S, b) = T \in P_2$
 - $\text{move}(T, a) = T \in P_2$ \quad \text{–} \quad \text{move}(T, b) = R \in P_1$

DFA already minimal
Brzozowski’s Algorithm: DFA Minimization

1. Given a DFA, reverse all the edges, make the initial state an accept state, and the accept states initial, to get an NFA

2. NFA -> DFA

3. For the new DFA, reverse the edges (and initial-accept swap) get an NFA

4. NFA -> DFA
Brzozowski's algorithm

Brzozowski's algorithm is a method for converting a non-deterministic finite automaton (NFA) into a deterministic finite automaton (DFA). The process involves the following steps:

1. Construct the NFA from the DFA.
2. For each state in the NFA, compute the set of states that can be reached from that state on a given input symbol.
3. For each state in the NFA, compute the set of states that can be reached from that state on a given input symbol.
4. The resulting automaton is a DFA.

The diagram above illustrates this process, showing the transition from a DFA to an NFA, and finally to a minimum DFA.
Complement of DFA

Given a DFA accepting language L

• How can we create a DFA accepting its complement?
• Example DFA
 - $\Sigma = \{a, b\}$
Complement of DFA

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- Note this **only** works with DFAs
 - Why not with NFAs?
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complementation