CMSC 330: Organization of Programming
Languages

DFAs, and NFAs, and Regexps
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The story so far, and what’s next

» Goal: Develop an algorithm that determines whether a
string s is matched by regex R

* |l.e., whether sis a member of R’s language

» Approach to come: Convert R to a finite automaton FA
and see whether s is accepted by FA

* Details: Convert R to a nondeterministic FA (NFA), which we
then convert to a deterministic FA (DFA),

» which enjoys a fast acceptance algorithm
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Two Types of Finite Automata

» Deterministic Finite Automata (DFA)

* Exactly one sequence of steps for each string
» Easy to implement acceptance check

* (Almost) all examples so far

» Nondeterministic Finite Automata (NFA)

* May have many sequences of steps for each string
* Accepts if any path ends in final state at end of string

* More compact than DFA
» But more expensive to test whether a string matches
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Comparing DFAs and NFAs

» NFAs can have more than one transition leaving a state
on the same symbol

d
O
» DFAs allow only one transition per symbol

e |.e., transition function must be a valid function
* DFA is a special case of NFA
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Comparing DFAs and NFAs (cont.)

» NFAs may have transitions with empty string label
* May move to new state without consuming character

€ .
O > c-transition

» DFA transition must be labeled with symbol
* A DFA is a specific kind of NFA
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DFA for (alb)*abb
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NFA for (a|b)*abb

» ba
* Has paths to either SO or S1
* Neither is final, so rejected

» babaabb

* Has paths to different states
* One path leads to S3, so accepts string
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NFA for (ablaba)*

» aba

» ababa
* Has paths to states SO, S1
* Need to use e-transition
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NFA and DFA for (ablaba)*
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Quiz 1: Which string is NOT accepted by this NFA?

ab
abaa
abab
abaab

c o w »
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Quiz 1: Which string is NOT accepted by this NFA?

ab
abaa
abab
abaab

o o w »
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Formal Definition

» A deterministic finite automaton (DFA) is a
S5-tuple (2, Q, qo, F, 0) where
* 2 is an alphabet
* Qis a nonempty set of states
Jo € Q is the start state
F € Qs the set of final states
0 : Q x Z — Q specifies the DFA's transitions
» What's this definition saying that & is?

» A DFA accepts s if it stops at a final state on s
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Formal Definition

. Example

input state
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2 ={0, 1}
Q = {S0, S1}
o = SO
F ={S1}

0=

symbol

SO

SO

S1

S1

SO

S1

or as { (S0,0,S0

(
(
(
(

S0,1,51
S51,0,S0

),
),
),
S1,1,51))



Implementing DFAs (one-off)

cur_state = 0;

while (1) {
' .

It S easy to bUIId symbol = getchar();
a program switch (cur_state) ({
\A/r]i(:r] r11irT]i(:E; Ea case 0: switch (symbol) {

case '0': cur_state = 0; break;
DFA case 'l': cur_state = 1; break;

case '\n': printf("rejected\n"); return

default: printf ("rejected\n"); return

}

1
break;
case 1: switch (symbol) {
0 case '0': cur_state 0; break;

case 'l': cur_state = 1; break;

case '\n': printf ("accepted\n"); return

0 ] default: printf ("rejected\n"); return
}

break;

default: printf ("unknown state; I'm confused\n");
break;

o
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Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components (2, Q, qq, F, 0) of a DFA:
letq =qq
while (there exists another symbol o of the input string)
q:=9(q, o);
if q € Fthen
accept
else reject

* g isjust an integer
* Represent 6 using arrays or hash tables
* Represent F as a set
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Nondeterministic Finite Automata (NFA)

» An NFA is a 5-tuple (2, Q, qo, F, 0) where
* 2,Q, q0, F as with DFAs
* 0 € Qx (2 u{e}) xQ specifies the NFA's transitions

a e >={a}
\| / . Q={S1, S2, S3}
a £ * qg= S1
SO i
« 5={(S1,a,S1), (S1,a,S2), (S2,£,S3) }

Example

» An NFA accepts s if there is at least one path via s
from the NFA’s start state to a final state
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NFA Acceptance Algorithm (Sketch)

» When NFA processes a string s

* NFA must keep track of several “current states”
» Due to multiple transitions with same label, and ¢-transitions

* |f any current state is final when done then accept s

» Example
* After processing “a”

> NFA may be in states a
S2

S3
» Since S3 is final, s is accepted

» Algorithm is slow, space-inefficient; prefer DFASs!
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Relating REs to DFAs and NFAs

» Regular expressions, NFAs, and DFAs accept the same
languages! Can convert between them

can
reduce

DFA < NFA

can transform can reduce

RE

NB. Both transform and reduce are historical terms; they mean “convert”
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Reducing Regular Expressions to NFAs

» Goal: Given regular expression A, construct NFA: <A> =
(Z’ Q’ qO’ F’ 6)

* Remember regular expressions are defined recursively from
primitive RE languages

* |Invariant: |F| =1 in our NFAs
» Recall F = set of final states

» Will define <A> for base cases: 0, ¢,
* Where o is a symbol in 2

» And for inductive cases: AB, A|B, A*
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Reducing Regular Expressions to NFAs

Recall: NFAis (Z, Q, qq, F, 0)
where
2 is the alphabet
Q is set of states
o is starting state

» Base case: o

\ F is set of final states
(0} . v .
0 is transition relation

<o> = ({0}, {S0, S1}, SO, {S1}, {(S0, 5, S1)} )
€ Q a F 5 )
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Reduction

» Base case: ¢

<e> = (9, {SO}, SO, {S0}, @)

<@> = (@, {SO, S1}, S0, {S1}, ©)
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» Base case: ¢

Recall: NFAis (Z, Q, qq, F, 0)
where
2 is the alphabet
Q is set of states
o is starting state
F is set of final states
O is transition relation




Reduction: Concatenation

» Induction: AB

v0evOe

<A> <B>

* <A>= (Zp, Qp, qa, {fa}, O4)
* <B>= (X, Qg, Qg {fs}, O)
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Reduction: Concatenation

» Induction: AB

<A> <B>

* <A>= (Zp, Qp, qa, {fa}, O4)
* <B>= (X, Qg, Qg {fs}, O)
* <AB>= (Zp U 2, Qa U Qg, gp, {fa}, 0a U Og U {(fa,€,08)} )
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Reduction: Union

» Induction: A|B @
JORSEC

© <A>= (Za, Qa, ga, {fa}, Op)
* <B>= (g, Qg, Qg {fg}, Os)
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Reduction: Union

» Induction: A|B ‘M Q

* <A>= (Zp, Qa, 9a, {fa}, Oa)
* <B>= (2, Qg, gg, {fs}, Og)
e <A|B>= (2, U Zg, Qa U Qg U {S0,S1}, SO, {S1},
6A U 6B U {(SO7£=qA)’ (So’s’qB)’ (fA’s’S1 )’ (fB’g’S1)})
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Reduction: Closure

» Induction: A*

oS = o

© <A>= (Za, Qa, Qa, {fa}, Oa)
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Reduction: Closure

» Induction: A*

* <A>= (Zp, Qa, 9a, {fa}, Oa)
o <A*>= (Z,, Qs U {S0,S1}, SO, {S1},
Oa U {(fa,€,51), (S0,£,94), (S0,€,S1), (S1,£,S0)})
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Quiz 2: Which NFA matches a* ?
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Quiz 2: Which NFA matches a* ?
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Quiz 3: Which NFA matches a|b* ?
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Quiz 3: Which NFA matches a|b* ?
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Recap

» Finite automata » Reducing RE to NFA
* Alphabet, states... e Concatenation
* (2,Q, qq F, 0)

» Types
* Deterministic (DFA)

a b

* Non-deterministic (NFA)
a

d
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Reduction Complexity

» Given a regular expression A of size n...
Size = # of symbols + # of operations

» How many states does <A> have?
* Two added for each |, two added for each *

* O(n)
* That's pretty good!
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Reducing NFA to DFA

can
reduce
DFA < NFA
can reduce
RE
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Why NFA — DFA

» DFA is generally more efficient than NFA

A
(W~ RE
NFA

Language: (alb)*ab



Why NFA — DFA

» DFA has the same expressive power as NFAs.

* Letlanguage L € 2*, and suppose L is accepted by NFA N = (2,
Q, qo, F, 0). There exists a DFA D= (Z, Q’, 9y, F’, &) that also
accepts L. (L(N) = L(D))

» NFAs are more flexible and easier to build. But DFAs have
no less power than NFAs.

NFA ¢ DFA



Reducing NFA to DFA

» NFA may be reduced to DFA
* By explicitly tracking the set of NFA states

» Intuition
 Build DFA where

» Each DFA state represents a set of NFA “current states”

» Example

a a
a £ a
~@>Es
NFA DFA
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Algorithm for Reducing NFA to DFA

» Reduction applied using the subset algorithm
* DFA state is a subset of set of all NFA states

» Algorithm
* Input
> NFA (2, Q, qo, Fn, O)
e Qutput
» DFA (Z, R, ro, Fq, 0)
* Using two subroutines
» €-closure(d, p) (and e-closure(d, Q))

> move(d, p, o) (and move(d, Q, o))
- (where p is an NFA state)

CMSC 330 Spring 2021
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e-transitions and g-closure

> Wesaypi>q

* Ifitis possible to go from state p to state g by taking only &-
transitions in 0
* If3p,pq1, P2 --- Pry 9 € Q such that
> {P.&,p1} € O, {p1,€,p2} €O, ..., {Pn,€,q} € O
» €-closure(d, p)
* Set of states reachable from p using e-transitions alone
> Set of states q such that p £, g according to 6
> e-closure(d, p)={q|p E qind}
> e-closure(d, Q) ={q|peQ,p5qind}
* Notes

» e-closure(d, p) always includes p

> We write e-closure(p) or e-closure(Q) when & is clear from context
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e-closure: Example 1

» Following NFA contains

. p1€—>p2 € €
* p2 5 p3 @ @
* p1 = p3 9
. € €
> Since p1 — p2 and p2 — p3

» €-closures
e e-closure(p1) = {p1,p2,p3}
 e-closure(p2) = {p2, p3}
e g-closure(p3) = {p3}
e g-closure({p1,p2})= {p1,p2,p3}u{p2 p3}

CMSC 330 Spring 2021 41



e-closure: Example 2

» Following NFA contains €
€
et COS(S
* p3 AN p2 @
° p1 £, P2

€ € &
» Since p1 - p3 and p3 — p2

» €-closures
* ge-closure(p1) = {p1,p2, p3}
e g-closure(p2) = {p2}
* e-closure(p3) = {p2, p3}
e e-closure({p2,p3})= {p2}u{p2, p3}
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e-closure Algorithm: Approach

» Input: NFA (2, Q, qo, F,,, 0), State Set R
» Output: State Set R’
» Algorithm
LetR'=R /] start states
Repeat
LetR=R’ // continue from previous
LetR'=Ru{g|peR,(p, s q) €} // new g-reachable states
Until R =R’ /] stop when no new states

This algorithm computes a fixed point
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e-closure Algorithm Example

» Calculate s-closure(5.{p1})

& &

{p1} {p1} a
{p1} {p1, p2} et
Let R=R’

{p1,p2} {p1, p2, p3} LetR'=Ru{g|peR, (p,e q) e d)

UntiR=R’
{p1, p2, p3} {p1,p2, p3}
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Calculating move(p,0)

» move(d,p,0)
* Set of states reachable from p using exactly one transition on
symbol o
> Set of states q such that {p, 0, q} € 0

> move(5,p,0) ={q|{p, 0,0} €O}
> move(d,Q,0)={q|peQ,{p,0,q} 0}
- i.e., can “lift” move() to a set of states Q

* Notes:
» move(d,p,o0) is J if no transition (p,o0,q) € O, for any q
» We write move(p,o) or move(R,0) when & clear from context
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move(p,o) : Example 1

» Following NFA

« ¥={a,b)} @@ b
d

» Move
e move(p1, a) = {p2, p3}
 move(p1, b) = ) move({p1,p2},b) = {p3}
* move(p2, a) = Z
* move(p2, b) = {p3}
* move(p3, a) = @
* move(p3, b) = %
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move(p,o) : Example 2

» Following NFA

e 2={a,b}
» Move

* move(p1, a) = {p2}
* move(p1, b) = {p3}
* move(p2, a) = {p3}
* move(p2, b) = %

* move(p3, a) = J

* move(p3, b) = %

CMSC 330 Spring 2021

move({p1,p2},a) = {p2,p3}
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NFA — DFA Reduction Algorithm (“subset”)

» Input NFA (2, Q, qp, F,, 0), Output DFA (%, R, ry, Fy4, &)

» Algorithm
Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r e R
Mark r
Foreacho e X
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u {e}
Letd =8 u{r, o, e}
LetFy={r|3s erwiths € F,}

CMSC 330 Spring 2021

/| DFA start state

I/ process DFA state r

/[ each state visited once
I/ for each symbol o

// states reached via o

// states reached via ¢

/] if state e is new

// add e to R (unmarked)

/[ add transition r—e on o

/[ final if include state in F,,
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NFA — DFA Example

e Start = e-closure(d,p1) = { {p1,p3} }
R={{p1,p3}}
re R={p1,p3}
move(d,{p1,p3},a) = {p2}

> € = g-closure(d,{p2}) = {p2}

> R=RuU{p2}} = {{p1,p3}, {p2} }

> 8 =8 u{{p1,p3}, a, {p2}}
move(d,{p1,p3},b) =

NFA
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NFA — DFA Example (cont.)

* R={{p1,p3}, {p2} } NFA

* re R={p2} a b

+ move(3,{p2}.a) = @ @@
* move(d,{p2},b) = {p3} £

> € = g-closure(d,{p3}) = {p3}
» R=Ru{{p3}} = {{p1,p3}, {p2}, {p3} }
> 8 =08 U {{p2}, b, {p3}}

DFA
>(>@>(®)
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NFA — DFA Example (cont.)

* R={{p1,p3}, {p2}, {P3} }
* re R={p3}

* Move({p3},a)=0

* Move({p3},b) =0

* Mark {p3}, exit loop

* Fq={{p1.p3}, {P3}}
> Since p3 € F,

e Done!

—>

DFA
@
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NFA — DFA Example 2

» NFA

» DFA

{A},

{B,D},

{C,D}
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Quiz 4: Which DFA is equiv to this NFA?

A

O -0 0

30 @"

D. INone of the above




Quiz 4: Which DFA is equiv to this NFA?

A.

O -00*0

NFA:

b

©; a a"

None of the above
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Actual Answer
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NFA — DFA Example 3

» NFA
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{A,E},

{B,D,E},

{C,D},

{E}
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Detailed NFA — DFA Example

—— Letry=e-closure(d,qp), add itto R

NFA ) While 3 an unmarked state r e R
Mark r
Foreacho € X

Let E = move(d,r,0)

Let e = e-closure(d,E)

Ife ¢ R
DFA LetR=Ru{e}

Letd =06 U, o, e}

LetFq={r|3s erwiths € F}

New Start State

©)



Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
— Foreacho e X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 Ife ¢ R
@ LetR=Ru {e}

1 Letd =06 U, o, e}
LetFq={r|3s erwiths € F,}

{A,B,C} | |



Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X
Let E = move(d,r,0)
—— Let e = g-closure(d,E)

0 Ife ¢ R
@ Let R=R U {e}

Letd =06 ufr, o, €}
LetFy={r|3s erwiths € F.}

{A,B,C} {B,C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 IfeeR
{AB.C} » {BC} LetR=R u {e}

— Letd =05 U/ 0,¢€}
LetFy={r|3s erwiths € F.}

{AB.C} |{BC}
{B,C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r

—> Foreacho € X M

Let E = move(d,r,0)

Let e = e-closure(d,E)

Ife ¢ R

Let R=R U {e}

1 Letd =06 U, o, e}
LetFq={r|3s erwiths € F}

{AB.C} |{BC}
{B,C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X M
Let E = move(d,r,0)
—— Let e =¢-closure(d,E)

0 IfegR
{A,B,C} »  {B.C} LetR=R u {e}
Letd =& U {r, o, e}

1 LetFy={r|3s erwiths € F.}

{AB.C} |{BC} {A,B,C}
{B,C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X M
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 Ife ¢ R
{AB.C} » {BC} LetR=R u {e}
—  Let&=8u{r o, e}

1 LetFy={r|3s erwiths e F,}

{AB.C} |{BC} {A,B,C}
{B,C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

— While 3 an unmarked state r ¢ R
Mark r
Foreacho € X M
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife¢gR
Let R=R u {e}
Letd =06 ufr, o, €}
LetFy={r|3s erwiths € F}

{AB.C} |{BC} {A,B,C}
{B,C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
—> Foreacho e X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 0 IfegR
{AB.C} » {BC} LetR=R u {e}
Letd =& U {r, o, e}

1 LetFy={r|3s erwiths e F,}

{AB.C} |{BC} {A,B,C}
{B,C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X /10
Let E = move(d,r,0)
—_ Let e = e-closure(d,E)

0 0 IfegR
Let R=R u {e}

v Letd =06 U, o, e}
1 LetFy={r|3s erwiths € F}
0 1
{A,B,C} {B,C} {A,B,C}

{B.C} {C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)

Ife ¢ R
Let R=R u{e}
V —> Letd =05 U/ 0,¢€}
1 LetFy={r|3s erwiths € F}
0 1
{A,B,C} {B,C} {A,B,C}

{B.C} {C}
{C}




Detailed NFA — DFA Example

Let ry = e-closure(d,q), add it to R

While 3 an unmarked state r ¢ R
Mark r
—> Foreacho e X M
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 0 IfegR
Let R=R u {e}

v 1 Letd =06 U, o, e}
1 LetFy={r|3s erwiths € F}
0 1
{A,B,C} {B,C} {A,B,C}

{B,C} {C} ?
{C}




Detailed NFA — DFA Example

Let ry = e-closure(d,q), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X M
Let E = move(d,r,0)
—— Let e =¢-closure(d,E)

0 0 IfegR
Let R=R u {e}

v 1 Letd =06 U, o, e}
1 LetFy={r|3s erwiths € F}
0 1
{A,B,C} {B,C} {A,B,C}

{B.C} {C} {B.C}
{C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X M
Let E = move(d,r,0)
Let e = e-closure(d,E)

Ife ¢ R
Let R=R u {e}
V v —_— Letd =8 ul{r, o, e}
1 1 LetFy={r|3s erwiths € F}
0 1
{A,B,C} {B,C} {A,B,C}

{B.C} {C} {B.C}
{C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

— While 3 an unmarked state r ¢ R
Mark r
Foreacho € X M
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife¢gR
Let R=R U {e}
Letd =06 U, o, e}
LetFy={r|3s erwiths € F}

{AB.C} |{BC} {A,B,C}
{B,C} {C} {B,C}
{C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
— Foreacho e X
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 0 0 IfeeR
—
Let R=R u {e}

V v 1 Letd =06 U, o, e}
1 1 LetFy={r|3s erwiths € F}
0 1
{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}
{C}




Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X /10
Let E = move(d,r,0)
—— Let e =¢-closure(d,E)

0 0 0 IfeeR
—
Let R=R u {e}

V v 1 Letd =06 U, o, e}
1 1 LetFy={r|3s erwiths € F,}
0 1
{A,B,C} {B,C} {A,B,C}
{B,C} {C} {B,C}
{C} {C}




Detailed NFA — DFA Example

Let ry = e-closure(d,q), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)

Ife ¢ R
LetR=R U {e}
v v —_ Letd =06 U, o, e}
1 1 LetFy={r|3s erwiths € F}
0 1
{A,B,C} {B,C} {A,B,C}
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Detailed NFA — DFA Example

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacho € X /11
Let E = move(d,r,0)
Let e = e-closure(d,E)
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Detailed NFA — DFA Example: Completec
NFA 1 0 .
A {A,B,C} {B,C} {A,B,C}
) 0 ° o {B,C} {C} {B.C}
A : s A © c} (c}
A ° ©
DFA . 0

D



NFA — DFA Example
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Analyzing the Reduction

» Can reduce any NFA to a DFA using subset alg.

» How many states in the DFA?
e Each DFA state is a subset of the set of NFA states

* Given NFA with n states, DFA may have 2" states
» Since a set with n items may have 2" subsets

* Corollary
» Reducing a NFA with n states may be O(2")

NFA DFA

CMSC 330 Spring 2021
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Recap: Matching a Regexp R

» Given R, construct NFA. Takes time O(R)

» Convert NFA to DFA. Takes time O(2R)
* But usually not the worst case in practice

» Use DFA to accept/reject string s
* Assume we can compute 8(q,0) in constant time

* Then time to process s is O(|s|)
» Can’t get much faster!

» Constructing the DFA is a one-time cost
* But then processing strings is fast

CMSC 330 Spring 2021



Closing the Loop: Reducing DFA to RE

can
reduce

DFA < NFA

can transform can transform

RE

CMSC 330 Spring 2021



Reducing DFAs to REs

» General idea
* Remove states one by one, labeling transitions with regular
expressions
* When two states are left (start and final), the transition label is
the regular expression for the DFA

abiba @
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DFA to RE example

Language over 2= {0,1} such that every string is a multiple of 3 in binary

i : New-Starting 0 ‘ 1 1
0 ‘ 0
9 —0 &
‘ € 1 0
1 0 New-Final State @

0+1001 0))
<S> (0+101 0)1) ;®

Starting State Final State

(0+1(0 1* 0)1)*

CMSC 330 Spring 2021



Minimizing DFAs

» Every regular language is recognizable by a unique
minimum-state DFA
* |gnoring the particular names of states

» In other words

* For every DFA, there is a unique DFA with minimum number
of states that accepts the same language

CMSC 330 Spring 2021 89



J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

Minimizing DFA: Hopcroft Reduction

» Intuition

* Look to distinguish states from each other
> End up in different accept / non-accept state with identical input

» Algorithm
* Construct initial partition
» Accepting & non-accepting states

* lteratively split partitions (until partitions remain fixed)

> Split a partition if members in partition have transitions to different
partitions for same input

- Two states x, y belong in same partition if and only if for all symbols in 2
they transition to the same partition

* Update transitions & remove dead states

CMSC 330 Spring 2021 90



Splitting Partitions

» No need to split partition {S,T,U,V}
* All transitions on a lead to identical partition P2
* Even though transitions on a lead to different states

A ([ =

CMSC 330 Spring 2021



Splitting Partitions (cont.)

» Need to split partition {S,T,U} into {S, T}, {U}
* Transitions on a from S, T lead to partition P2
* Transition on a from U lead to partition P3

( P’I\ PZN

CMSC 330 Spring 2021
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Resplitting Partitions

» Need to reexamine partitions after splits
* Initially no need to split partition {S,T,U}

* After splitting partition {X,Y} into {X}, {Y} we need to split partition
{S,T,U} into {S,T}, {U}

st
“““
-
b
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Minimizing DFA: Example 1

» DFA

» Initial partitions

» Split partition

CMSC 330 Spring 2021
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Minimizing DFA: Example 1

P2 P1
» DFA [ a0\ )
a b
D@&/ ,
\ J A
» Initial partitions }@ :
* Accept {R}=P1
* Reject {S, T} =P2
» Split partition? — Not required, minimization done
* move(S,a)=T e P2 — move(S,b) =R e P1

* move(T,a)=T € P2 —move (T,b) =R € P1
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Minimizing DFA: Example 2

d

a@b
> R)

b

CMSC 330 Spring 2021
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Minimizing DFA: Example 2

» DFA ﬁ?a

Es=0N

o b P DFA
» Initial partitions already
* Accept {R}=P1 minimal
* Reject {S, T} =P2
» Split partition? — Yes, different partitions for B
* move(S,a) =T e P2 —move(S,b) =TeP2

* move(T,a) =TeP2 —move (T,b) =R e P1

CMSC 330 Spring 2021 97



Brzozowski's Algorithm: DFA Minimization

1. Given a DFA, reverse all the edges, make the initial state
an accept state, and the accept states initial, to get an
NFA

2. NFA->DFA

3. Forthe new DFA, reverse the edges (and initial-accept
swap) get an NFA

4. NFA->DFA

CMSC 330 Spring 2021



Brzozowski's algorithm

ﬁ@ﬂﬁ\o
D@@ o0

I\/I|n|mum DFA
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Complement of DFA

» Given a DFA accepting language L
* How can we create a DFA accepting its complement?

* Example DFA
» 2 ={a,b}

d

lo@iB O

b
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Complement of DFA

» Algorithm
* Add explicit transitions to a dead state
* Change every accepting state to a non-accepting state & every non-
accepting state to an accepting state
» Note this only works with DFAs
* Why not with NFAs?
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Summary of Regular Expression Theory

» Finite automata
* DFA, NFA

» Equivalence of RE, NFA, DFA
 RE — NFA

> Concatenation, union, closure

* NFA — DFA

» g-closure & subset algorithm

» DFA

* Minimization, complementation
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