
CMSC 330:  Organization of 
Programming Languages

Lambda Calculus
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Quiz #7
Beta reducing the following term produces what 
result?

λx.(λy. y y) w z

a) λx. w w z    

b) λx. w z    

c) w z       

d) Does not reduce
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Lambda Calc, Impl in OCaml

e ::= x

|  λx.e

|  e e

y

λx.x

λx.λy.x y

(λx.λy.x y) λx.x x

type id = string
type exp = Var of id
| Lam of id * exp
| App of exp * exp

Var “y”
Lam (“x”, Var “x”)
Lam (“x”,(Lam(“y”,App (Var “x”, Var “y”))))

App 
(Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))), 
Lam (“x”, App (Var “x”, Var “x”)))
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Quiz #8

What is this term’s AST? 

λx.x x

62

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 

Var of id
| Lam of id * exp
| App of exp * exp
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Quiz #8

What is this term’s AST? 

λx.x x
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A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 

Var of id
| Lam of id * exp
| App of exp * exp
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OCaml Implementation: Substitution
(* substitute e for y in m-- *)
let rec subst m y e =
match m with

Var x -> 
if y = x then e (* substitute *)
else m          (* don’t subst *)

| App (e1,e2) ->
App (subst e1 y e, subst e2 y e)

| Lam (x,e0) -> …

64

m[y:=e]
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OCaml Impl: Substitution (cont’d)
(* substitute e for y in m-- *)
let rec subst m y e = match m with …

| Lam (x,e0) ->
if y = x then m
else if not (List.mem x (fvs e)) then
Lam (x, subst e0 y e)

else
let z = newvar() in (* fresh *)
let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)

65

Shadowing blocks

substitution

Safe: no capture possible

Might capture; need to α-convert
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CBV, L-to-R Reduction with Partial Eval
let rec reduce e =
match e with

App (Lam (x,e), e2) -> subst e x e2
| App (e1,e2) -> 
let e1' = reduce e1 in
if e1' != e1 then App(e1',e2)
else App (e1,reduce e2)

| Lam (x,e) -> Lam (x, reduce e)
| _ -> e
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Straight β rule

Reduce lhs of app

Reduce rhs of app

nothing to do

Reduce function body
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Another Way to Avoid Capture
Another way to avoid accidental variable 
capture is to use the “Barendregt Convention”: 
gives everything ‘fresh’ names.

l If every name is unique, no chance of variable 
capture

l Simple, but not great for performance as you 
have to do it after every beta-reduction!
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Quick Recap on LC
Despite its simplicity (3 AST nodes and a handful of 
small-step rules), LC is Turing Complete
Any function that can be evaluated on a Turing 
machine can be encoded into LC (and vice-versa)
- But we’ll have to come up with the encodings!

To prove that it is Turing Complete we have to map 
every possible Turing Machine to LC
- We won’t be doing that
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The Power of Lambdas

To give a sense of how one can encode various 
constructs into LC we’ll be looking at some 
concrete examples:
• Let bindings

• Booleans

• Pairs

• Natural numbers & arithmetic

• Looping
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Let bindings

Local variable declarations are like defining a 
function and applying it immediately (once):
• let x = e1 in e2 = (λx.e2) e1

Example
• let x = (λy.y) in x x = (λx.x x) (λy.y) 

where 

(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y) 
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Booleans

Church’s encoding of mathematical logic
• true = λx.λy.x

• false = λx.λy.y

• if a then b else c
Ø Defined to be the expression: a b c

Examples
• if true then b else c = (λx.λy.x) b c → (λy.b) c → b

• if false then b else c = (λx.λy.y) b c → (λy.y) c → c
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Booleans (cont.)

Other Boolean operations
• not = λx.x false true

Ø not x = x false true = if x then false else true

Ø not true → (λx.x false true) true → (true false true) → false

• and = λx.λy.x y false

Ø and x y = if x then y else false

• or = λx.λy.x true y

Ø or x y = if x then true else y

Given these operations
• Can build up a logical inference system
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Quiz #9

What is the lambda calculus encoding of xor x y?
xor true true = xor false false = false

xor true false = xor false true = true

x x y

x (y true false) y

x (y false true) y

y x y
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true = λx.λy.x

false = λx.λy.y

if a then b else c = a b c

not = λx.x false true
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Quiz #9

What is the lambda calculus encoding of xor x y?
xor true true = xor false false = false

xor true false = xor false true = true

x x y

x (y true false) y

x (y false true) y
y x y
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true = λx.λy.x

false = λx.λy.y

if a then b else c = a b c

not = λx.x false true
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Pairs
Encoding of a pair a, b
• (a,b) = λx.if x then a else b

• fst = λf.f true

• snd = λf.f false

Examples
• fst (a,b) = (λf.f true) (λx.if x then a else b) →

(λx.if x then a else b) true →

if true then a else b → a

• snd (a,b) = (λf.f false) (λx.if x then a else b) →

(λx.if x then a else b) false →

if false then a else b → b
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Natural Numbers (Church* Numerals) 

Encoding of non-negative integers
• 0 = λf.λy.y

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)

• 3 = λf.λy.f (f (f y))

i.e., n = λf.λy.<apply f n times to y>

• Formally:  n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)
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Quiz #10

What OCaml type could you give to a Church-
encoded numeral?

(’a -> ‘b) -> ‘a -> ‘b

(‘a -> ‘a) -> ‘a -> ‘a

(‘a -> ‘a) -> ‘b -> int

(int -> int) -> int -> int
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n = λf.λy.<apply f n times to y>
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n = λf.λy.<apply f n times to y>
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Operations On Church Numerals 

Successor
• succ = λz.λf.λy.f (z f y)

Example
• succ 0 =

(λz.λf.λy.f (z f y)) (λf.λy.y) →

λf.λy.f ((λf.λy.y) f y) →

λf.λy.f ((λy.y) y) →

λf.λy.f y

= 1

Since (λx.y) z → y

• 0 = λf.λy.y

• 1 = λf.λy.f y
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Operations On Church Numerals (cont.)

IsZero?
• iszero = λz.z (λy.false) true

This is equivalent to λz.((z (λy.false)) true)

Example
• iszero 0 =

(λz.z (λy.false) true) (λf.λy.y) →

(λf.λy.y) (λy.false) true →

(λy.y) true →

true

• 0 = λf.λy.y

Since (λx.y) z → y
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Arithmetic Using Church Numerals

If M and N are numbers (as λ expressions)
• Can also encode various arithmetic operations

Addition
• M + N = λf.λy.M f (N f y)

Equivalently: + = λM.λN.λf.λy.M f (N f y)

Ø In prefix notation (+ M N)

Multiplication
• M * N = λf.M (N f)

Equivalently: * = λM.λN.λf.λy.M (N f) y

Ø In prefix notation (* M N)
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Arithmetic (cont.)

Prove 1+1 = 2
• 1+1 = λx.λy.(1 x) (1 x y) = 

• λx.λy.((λf.λy.f y) x) (1 x y) → 

• λx.λy.(λy.x y) (1 x y) →

• λx.λy.x (1 x y) →

• λx.λy.x ((λf.λy.f y) x y) →

• λx.λy.x ((λy.x y) y) →

• λx.λy.x (x y) = 2

With these definitions
• Can build a theory of arithmetic

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)
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Arithmetic Using Church Numerals

What about subtraction?
• Easy once you have ‘predecessor’, but...

• Predecessor is very difficult!

Story time:
• One of Church’s students, Kleene (of Kleene-star 

fame) was struggling to think of how to encode 

‘predecessor’, until it came to him during a trip to the 

dentists office.

• Take from this what you will

Wikipedia has a great derivation of 
‘predecessor’, not enough time today.
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Looping+Recursion

So far we have avoided self-reference, so how 
does recursion work?

We can construct a lambda term that ‘replicates’ 
itself:

• Define D = λx.x x, then
l D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D

• D D is an infinite loop

We want to generalize this, so that we can make 
use of looping
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The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))

Then
Y F =

(λf.(λx.f (x x)) (λx.f (x x))) F →

(λx.F (x x)) (λx.F (x x)) →

F ((λx.F (x x)) (λx.F (x x)))

= F (Y F)

Y F is a fixed point (aka fixpoint) of F

Thus Y F = F (Y F) = F (F (Y F)) = ...
• We can use Y to achieve recursion for F
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Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))
• The second argument to fact is the integer

• The first argument is the function to call in the body

Ø We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1

→ if 1 = 0 then 1 else 1 * ((Y fact) 0)

→ 1 * ((Y fact) 0)

= 1 * (fact (Y fact) 0)

→ 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))

→ 1 * 1 → 1
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Factorial 4=?

CMSC 330 Spring 2021 87

(Y G) 4 
G (Y G) 4 
(λr.λn.(if n = 0 then 1  else n × (r (n−1)))) (Y G) 4
(λn.(if n = 0 then 1 else n × ((Y G) (n−1)))) 4
if 4 = 0 then 1 else 4 × ((Y G) (4−1))
4 × (G (Y G) (4−1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))
4 × (3 × (G (Y G) (3−1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))
4 × (3 × (2 × (G (Y G) (2−1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))
4 × (3 × (2 × (1 × (G (Y G) (1−1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))
4 × (3 × (2 × (1 × (1))))
24
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Discussion
Lambda calculus is Turing-complete 
• Most powerful language possible

• Can represent pretty much anything in “real” language

Ø Using clever encodings

But programs would be 
• Pretty slow (10000 + 1 → thousands of function calls)

• Pretty large (10000 + 1 → hundreds of lines of code)

• Pretty hard to understand (recognize 10000 vs. 9999)

In practice
• We use richer, more expressive languages

• That include built-in primitives
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The Need For Types
Consider the untyped lambda calculus
• false = λx.λy.y

• 0 = λx.λy.y

Since everything is encoded as a function...
• We can easily misuse terms…

Ø false 0 → λy.y

Ø if 0 then ...

…because everything evaluates to some function

The same thing happens in assembly language
• Everything is a machine word (a bunch of bits)

• All operations take machine words to machine words
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Simply-Typed Lambda Calculus (STLC)

e ::= n | x | λx:t.e | e e
• Added integers n as primitives

Ø Need at least two distinct types (integer & function)… 

Ø …to have type errors

• Functions now include the type t of their argument

t ::= int | t → t
• int is the type of integers

• t1 → t2 is the type of a function 

Ø That takes arguments of type t1 and returns result of type t2
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Types are limiting

STLC will reject some terms as ill-typed, even if 
they will not produce a run-time error
• Cannot type check Y in STLC

Ø Or in OCaml, for that matter, at least not as written earlier.

Surprising theorem: All (well typed) simply-typed 
lambda calculus terms are strongly normalizing
• A normal form is one that cannot be reduced further

Ø A value is a kind of normal form

• Strong normalization means STLC terms always

terminate 

Ø Proof is not by straightforward induction: Applications 

“increase” term size
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Summary

Lambda calculus is a core model of computation
• We can encode familiar language constructs using 

only functions

Ø These encodings are enlightening – make you a better 

(functional) programmer

Useful for understanding how languages work
• Ideas of types, evaluation order, termination, proof 

systems, etc. can be developed in lambda calculus,

Ø then scaled to full languages
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