CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC 330 Spring 2021

Quiz #7

Beta reducing the following term produces what
result?

AX.(AY. Yy Y)W Z

a) AX. WW Z

b) AX. W Z

C)WZ

d) Does not reduce

CMSC 330 Spring 2021

59

Quiz #7

Beta reducing the following term produces what
result?

AX.(AY. Yy Y)W Z

a) AX. ww z

b) AX. W Z

C)WZ

d) Does not reduce

CMSC 330 Spring 2021

60

Lambda Calc, Impl in OCaml

type id = string

"e=X type exp = Var of id
| Ax.e Lam of id * exp
| ee | App of exp * exp
Y Var “y”
AX.X Lam (“x”, Var “x”
AX.AY.X Y Lam (“x”, (Lam(“y”,App (Var “x”, Var “y”))))

App
(AX.Ay-X y) AX.X X (Lam (“X”,Lam (“Y”/APP (Var“X”, Var“y”))) ,

Lam (“x”, App (Var “x”, Var “x”)))

CMSC 330 Spring 2021 61

Quiz #8

What is this term’s AST? f¥pe id = string

type exp =
Var of id
| Lam of id * exp
AX. X X | App of exp * exp

App (Lam (“x”, Var “x”), Var “x”)
(Var “x”, Var “x”, Var “x”)
Lam “X//, App (Var “x//, Var “x//))
App (Lam (“X”, App (“X”, \\X//)))

oCowp
=~
£

CMSC 330 Spring 2021 62

Quiz #8

What is this term’s AST? f¥pe id = string

type exp =
Var of id
| Lam of id * exp
AX. X X | App of exp * exp

App (Lam (“x”, Var “x”), Var “x”)
(Var “x”, Var “x”, Var “x”)
Lam \\X//, App (Var \\X//, Var \‘x//))
App (Lam (“X”, App (“X”, \\X//)))

oCowp
=~
£

CMSC 330 Spring 2021 63

OCaml Implementation: Substitution

(* substitute e for y in m-- mM[y:=€] *)
let rec subst m y e =
match m with

Var x ->

if y = x then e (* substitute *)
else m (* don’t subst *)
| App (el,e2) ->

App (subst el y e, subst e2 y e)
| Lam (x,e0) -> ..

CMSC 330 Spring 2021 64

OCaml Impl: Substitution (cont'd)

(* substitute e for y in m-- mM[y:=€] *)
let rec subst m y e = match m with ..
L ,e0) -> _
| .am (x,e0) Shadowing blocks
if y = x then m substitution
else if not (List.mem x (fvs e)) then

Lam (x, subst e0 y e) g5 no capture possible

else Might capture; need to a-convert
let z = newvar() in (* fresh *)

let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)

CMSC 330 Spring 2021 65

CBYV, L-to-R Reduction with Partial Eval

let rec reduce e =

match e with Straight B rule

App (Lam (x,e), e2) -> subst e x e2
| App (el,e2) ->
let el' = reduce el in Reduce |hs of app
if el' != el then App(el’',e2)
else App (el,reduce e2) Reduce rhs of app

| Lam (x,e) -> Lam (x, reduce e)

| _ -> e Reduce function body

nothing to do

CMSC 330 Spring 2021 66

Another Way to Avoid Capture

» Another way to avoid accidental variable
capture is to use the “Barendregt Convention™:
gives everything ‘fresh’ names.

. If every name is unique, no chance of variable
capture

. Simple, but not great for performance as you
have to do it after every beta-reduction!

CMSC 330 Spring 2021 67

Quick Recap on LC

» Despite its simplicity (3 AST nodes and a handful of
small-step rules), LC is Turing Complete

» Any function that can be evaluated on a Turing
machine can be encoded into LC (and vice-versa)

- But we’ll have to come up with the encodings!

» To prove that it is Turing Complete we have to map
every possible Turing Machine to LC

- We won't be doing that

CMSC 330 Spring 2021 68

The Power of Lambdas

» To give a sense of how one can encode various

constructs into LC we’ll be looking at some
concrete examples:

e Let bindings

e Booleans

e Pairs

e Natural numbers & arithmetic

e Looping

CMSC 330 Spring 2021

69

Let bindings

» Local variable declarations are like defining a
function and applying it immediately (once):
e letx=e1ine2 = (Ax.e2)e1

» Example
e let x = (Ay.y) in X X = (AX.X X) (Ay.y)

where
(AX.X X) (Ay.y) — (AX.X X) (Ay.y) — (Ay.y) (Ay.y) — (Ay.y)

CMSC 330 Spring 2021

70

Booleans

» Church’s encoding of mathematical logic
e frue = AX.Ay.Xx
e false = AX.Ay.y

e if athen b else ¢
> Defined to be the expression: a b ¢

» Examples
e if true then b else c = (AXAy.x) b c — ()\6 i:—>b
o if false then b else c = (Ax.Ay.y)bc — (Ay.y)c — cC

CMSC 330 Spring 2021

71

Booleans (cont.)

» Other Boolean operations

e not = Ax.x false true
> not x = x false true = if x then false else true
» not true — (Ax.x false true) true — (true false true) — false

e and = Ax.Ay.x y false

» and xy = if x then y else false

e Or = AX.Ay.x truey
» or xy = if x then true else y

» Given these operations
e Can build up a logical inference system

CMSC 330 Spring 2021

72

Quiz #9

What is the lambda calculus encoding of xor x y?

» XOr true true = xor false false = false
» Xor true false = xor false true = true
» XXY

true = AX.Ay.x

» X (y true false) y
» X (y false true) y

> Y XY

CMSC 330 Spring 2021

false = AX.Ay.y
ifathenbelsec=abc
not = Ax.x false true

73

Quiz #9

What is the lambda calculus encoding of xor x y?

» XOr true true = xor false false = false
» Xor true false = xor false true = true
» XXY

true = AX.Ay.x

» X (y true false) y
» X (y false true) y

> Y XY

CMSC 330 Spring 2021

false = AX.Ay.y
ifathenbelsec=abc
not = Ax.x false true

74

Pairs

» Encoding of a pair a, b
e (a,b) = Ax.if xthen a else b
o fst = Af.f true
e snd = Af.f false

» Examples
e fst (a,b) = (Af.f true) (Ax.if x then a else b) —
(Ax.if x then a else b) true —
if true thenaelseb — a
e snd (a,b) = (Af.f false) (Ax.if x then a else b) —
(Ax.if x then a else b) false —
if false thenaelseb — b

CMSC 330 Spring 2021

75

Natural Numbers (Church* Numerals)

» Encoding of non-negative integers
o 0 =A.Ayy
o 1=MNAy.fy
o 2 =MNAy.f(fy)
o 3 =ANAy.f(f(fy))
l.e., n = AM.Ay.<apply f n times to y>
e Formally: n+1 = Af.Ay.f (nfy)

*(Alonzo Church, of course)

CMSC 330 Spring 2021

76

Quiz #10 n = M.Ay.<apply f n times to y>

What OCaml type could you give to a Church-
encoded numeral?

» (a->b)->'a->"b
» (‘fa->"a)->'a->"'a
» (‘fa->"a)->b->int
» (int ->int) -> int -> int

CMSC 330 Spring 2021 77

Quiz #10 n = M.Ay.<apply f n times to y>

What OCaml type could you give to a Church-
encoded numeral?

» (a->b)->'a->"b
» (‘a->‘a)->‘a->"‘a
» (‘fa->"a)->b->int
» (int ->int) -> int -> int

CMSC 330 Spring 2021 78

Operations On Church Numerals

» Successor

e succ = AzZAAYf (z fy) * 0=ALAy.y
o 1 =MAyfy
» Example
e succ 0 =
(Az.MAy.f (2 Ty)) (AMfAYY) —
N.AY.f ((AfAyy) fy) —
AAYT((Ay-y)y) = Since (AX.y)z —y

M.Ay.fy
=1

CMSC 330 Spring 2021 79

Operations On Church Numerals (cont.)

» IsZero”?
e iszero = Az.z (Ay.false) true
This is equivalent to Az.((z (Ay.false)) true)

» Example
e iszero 0 =
(Az.z (Ay.false) true) (AMf.Ayy) —
(Af.Ay.y) (Ay.false) true —
(Ay.y) true —
true

e 0 =A.Ayy

Since (AX.y)z —y

CMSC 330 Spring 2021 80

Arithmetic Using Church Numerals

» If M and N are numbers (as A expressions)
e Can also encode various arithmetic operations
» Addition
e M+ N=AAy.Mf(NTfy)
Equivalently: + = AMLAN.AFAY.M f (N fy)

» In prefix notation (+ M N)

» Multiplication
e M*N = A.M(NT)
Equivalently: * = AM.AN.AfAY.M (N f) y

> In prefix notation (* M N)

CMSC 330 Spring 2021

81

Arithmetic (cont.)

. Prove 141 = 2 o 1=A.Ay.fy
o 1+1 = AX.Ay.(1 X) (1 xYy) = * 2= AAE(TY)
o AX.AY.((MAY.fy)x) (1 xy)—
o AXAY.(Ay.xy) (1 xy)—
o AX.Ay.x (1 XYy)—
o AX.Ay.X ((Af.Ay.fy)xy) —
o AXAY.X ((Ay.XYy)y) —
o AXAy.X (Xy) =2

» With these definitions
e Can build a theory of arithmetic

CMSC 330 Spring 2021 82

Arithmetic Using Church Numerals

» What about subtraction?
e Easy once you have ‘predecessor’, but...
e Predecessor is very difficult!

» Story time:

e One of Church’s students, Kleene (of Kleene-star
fame) was struggling to think of how to encode
‘predecessor’, until it came to him during a trip to the
dentists office.

e Take from this what you will

» Wikipedia has a great derivation of
‘predecessor’, not enough time today.

CMSC 330 Spring 2021 83

Looping+Recursion

» So far we have avoided self-reference, so how
does recursion work?

» We can construct a lambda term that ‘replicates’
itself:
e Define D = Ax.x X, then
e DD = (AxXxX)(AXXX)— (AXXX)(Axxx)=DD
e D D is an infinite loop

» We want to generalize this, so that we can make
use of looping

CMSC 330 Spring 2021 84

The Fixpoint Combinator

Y = M.(AX.f (X X)) (AX.T (X X))

» Then
YF=
(Af.(AX.T (X X)) (AX.f (X X))) F —
(AX.F (x X)) (AX.F (x X)) —
F ((AX.F (X x)) (AX.F (x x)))
=F(YF)
» Y F is a fixed point (aka fixpoint) of F
» ThusYF=F(YF)=F(F(YF))=...

e \We can use Y to achieve recursion for F

CMSC 330 Spring 2021

85

Example

fact = AM.An.if n = 0 then 1 else n * (f (n-1))

e The second argument to fact is the integer
e The first argument is the function to call in the body

» We'll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
— if 1 =0then 1 else 1 * ((Y fact) 0)

—

—

—

1 * ((Y fact) 0)
1 * (fact (Y fact) 0)
1*(if0=0then 1 else 0" ((Y fact) (-1))

/*1_)1

CMSC 330 Spring 2021

Factorial 4=

(Y G) 4
G (Y G) 4

(Ar.An.(if n = @ then 1 elsen X (r (n-1)))) (Y G) 4
(An.(if n = @ then 1 else n X ((Y G) (n-1)))) 4
if 4 = 0 then 1 else 4 X ((Y G) (4-1))

4

S S S T T s Sl T S ST R S

X X X X X X X X X X X X X

(G (Y G) (4-1))

((An. (1, if n = 0; else n X ((Y G) (n-1)))) (4-1))

(1, if 3 = 0; else 3 X ((Y G) (3-1)))

(G (Y G) (3-1)))

((An.(1, if n = 0; else n X ((Y G) (n-1)))) (3-1)))

(1, if 2 = 9; else 2 X ((Y G) (2-1))))

(G (Y G) (2-1))))

((An.(1, if n = 9; else n X ((Y G) (n-1)))) (2-1))))
(1, if 1 = 0; else 1 X ((Y G) (1-1)))))

(3
(3
(3
(3
(3
(3
(3
(3
(3
(3

X X X X X X X X X X

(2
(2
(2
(2
(2
(2
(2

X X X X X X X

CMSC 330 Spring 2021

(1
(1
(1
(1

X (G (Y G) (1-1)))))

X ((An.(1, if n = 9; elsen X ((Y G) (n-1)))) (1-1)))))
X (1, if @ = 9; else @ X ((Y G) (©-1))))))

x (1))))

87

Discussion

» Lambda calculus is Turing-complete
e Most powerful language possible

e Can represent pretty much anything in “real” language
» Using clever encodings

» But programs would be
e Pretty slow (10000 + 1 — thousands of function calls)
e Pretty large (10000 + 1 — hundreds of lines of code)
e Pretty hard to understand (recognize 10000 vs. 9999)
» In practice
e \We use richer, more expressive languages
e That include built-in primitives

CMSC 330 Spring 2021 88

The Need For Types

» Consider the untyped lambda calculus
e false = AX.Ay.y
e 0 =AXAyy
» Since everything is encoded as a function...

e \We can easily misuse terms...
> false 0 — Ay.y
> if O then ...

...because everything evaluates to some function

» The same thing happens in assembly language
e Everything is a machine word (a bunch of bits)
e All operations take machine words to machine words

CMSC 330 Spring 2021 89

Simply-Typed Lambda Calculus (STLC)

»re=n|x|Axtel|ee
e Added integers n as primitives

» Need at least two distinct types (integer & function)...
» ...to have type errors

e Functions now include the type t of their argument

»ti=int|t—t
e int is the type of integers

e {1 — 12 is the type of a function
» That takes arguments of type t1 and returns result of type t2

CMSC 330 Spring 2021 90

Types are limiting

» STLC will reject some terms as ill-typed, even if
they will not produce a run-time error
e Cannot type check Y in STLC

> Or in OCaml, for that matter, at least not as written earlier.
» Surprising theorem: All (well typed) simply-typed
lambda calculus terms are strongly normalizing

e A normal form is one that cannot be reduced further
> A value is a kind of normal form

e Strong normalization means STLC terms always
terminate

» Proof is not by straightforward induction: Applications
“‘increase” term size

CMSC 330 Spring 2021 91

Summary

» Lambda calculus is a core model of computation

e \We can encode familiar language constructs using
only functions

» These encodings are enlightening — make you a better
(functional) programmer

» Useful for understanding how languages work

e |deas of types, evaluation order, termination, proof
systems, etc. can be developed in lambda calculus,
» then scaled to full languages

CMSC 330 Spring 2021 92

