
CMSC 420 Dave Mount

CMSC 420: Lecture 2
Some Basic Data Structures

Basic Data Structures: Before we go into our coverage of complex data structures, it is good to
remember that in many applications, simple data structures are sufficient. This is true, for
example, if the number of data objects is small enough that efficiency is not so much an issue,
and hence a complex data structure is not called for. In many instances where you need a
data structure for the purposes of prototyping an application, these simple data structures
are quick and easy to implement.

Abstract Data Types: An important element to good data structure design is to distinguish
between the functional definition of a data structure and its implementation. By an abstract
data structure (ADT) we mean a set of objects and a set of operations defined on these
objects. For example, a stack ADT is a structure which supports operations such as push
and pop (whose definition you are no doubt familiar with). A stack may be implemented in
a number of ways, for example using an array or using a linked list. An important aspect of
object-oriented languages, like Java, is the capability to present the user of a data structure
with an abstract view of its function without revealing the methods with which it operates.
Java’s interface/implements mechanism is an example. To a large extent, this course will be
concerned with the various approaches for implementing simple abstract data types and the
tradeoffs between these options.

Linear Lists: A linear list or simply list is perhaps the most basic of abstract data types. A list
is simply an ordered sequence of elements 〈a1, a2, . . . , an〉. We will not specify the actual type
of these elements here, since it is not relevant to our presentation. (In Java this would be
handled through generics.)

The size or length of such a list is n. Here is a very simple, minimalist specification of a list:

init(): Initialize an empty list

get(i): Returns element ai

set(i,x): Sets the ith element to x

length(): Returns the number of elements currently in the list

insert(i,x): Insert element x just prior to element ai (causing the index of all subsequent
items to be increased by one).

delete(i): Delete the ith element (causing the indices of all subsequent elements to be
decreased by 1).

I am sure that you can imagine many other useful operations, for example searching the list
for an item, splitting or concatenating lists, generating an iterator object for enumerating the
elements of the list.

There are a number of possible implementations of lists. The most basic question is whether
to use sequential allocation (meaning storing the elements sequentially in an array) or linked
allocation (meaning storing the elements in a linked list). (See Fig. 1.) With linked allocation
there are many other options to be considered. Is the list singly linked (each node pointing
to its successor in the list), doubly linked (each node pointing to both its successor and
predecessor), circularly linked (with the last node pointing back to the first)?

Lecture 2 1 Spring 2021



CMSC 420 Dave Mount

Sequential allocation

Singly linked list

Doubly linked list

a1
a2
a3
a4

a1 a2 a3 a4head

tail

a1

head

tail

a2 a3 a4

Fig. 1: Common types of list allocation.

Stacks, Queues, and Deques: There are a few very special types of lists. The most well known
are of course stacks and queues. We’ll also discuss an interesting generalization, called the
deque (see Fig. 2):

Stack: Supports insertion (push) and removal (pop) from only one end of the list, called the
stack’s top. Stacks are among the most widely used of all data structures, and we will
see many applications of them throughout the semester.

Queue: Supports insertion (called enqueue) and removal (called dequeue), each from opposite
ends of the list. The end where insertion takes place is called the tail, and the end where
removals occur is called the head.

Deque: This data structure is a generalization of stacks and queues, called a double-ended
queue or “deque” for short. It supports insertions and removals from either end of the
list.

The name is actually a play on words. It is written like “d-e-que” for a “double-ended
queue”, but it is pronounced like deck, because it behaves like a deck of cards, since you
can deal off the top or the bottom.

push

pop

pushFront

popFront

pushBack

popBackdequeue

enqueue
Stack Queue Deque

top headtail

Fig. 2: Stack, Queue, and Deque.

Both stacks and queues can be implemented efficiently as arrays or as linked lists. Note
that when a queue is implemented using sequential allocation (as an array) the head and tail
pointers chase each other around the array. When each reaches the end of the array it wraps
back around to the beginning of the array.

Dynamic Storage Reallocation: When sequential allocation is used for stacks and queues, an
important issue is what to do when an attempt is made to insert an element into an array
that is full. When this occurs, the usual practice is the allocate a new array of twice the
size as the existing array, and then copy the elements of the old array into the new one. For
example, if the initial stack or queue has 8 elements, then when an attempt is made to insert

Lecture 2 2 Spring 2021



CMSC 420 Dave Mount

a 9th element, we allocate an array of size 16, copy the existing 8 elements to this new array,
and then add the new element. When we fill this up, we then allocate an array of size 32,
and when it is filled an array of size 64, and so on.

To understand whether such an approach is efficient, we will view the problem from the
perspective of an amortized analysis.

Amortized Analysis: In an amortized analysis of a data structure, rather than the (worst-case)
cost of each individual operation, we consider the average cost of maintaining the data struc-
ture over a long sequence of operations. The idea is that many operations are very cheap
to perform, but occasionally we need to perform a major reorganization, which can be quite
costly. More formally, suppose that the running time of any sequence of m data structure
operations (starting from an empty structure) is given by a function T (m). Then we amor-
tized cost of each operation is defined to be T (m)/m. Amortization is a way of establishing
that, when taken as a whole, the costly reorganizations do not dominate the cheap ones.
(The term comes from economics. It refers to spreading out expensive payments over small
installments.)

To make this more formal in the case of a dynamic stack, let’s define cost model, which
described the “actual cost” of each operation:

Cheap: Each time we are asked to perform a push or pop, and the array is not reallocated,
it costs one (+1) work unit for the operation.

Expensive: If a push would cause the array to overflow, we reallocated the current array of
size n into a new array of size 2n, and it costs 2n work units to perform the reallocation
(which involves allocating the new array, initializing it, copying the n elements over).1

Finally, it costs 1 additional work unit to perform the actual push operation.

For example, suppose we start with an array of size n = 1, and we perform a sequence of m
pushes and pops. What is the total cost of all these operations? If we never did a reallocation
(just alternated one push and one pop), the overall cost would be exactly m, and this is the
lowest possible. But how high might the cost be? Suppose we just keep pushing elements.
Suppose, for example, that we push 17 elements. When we push the second element, we
overflow the array of size 1 and double the array size to n = 2. When we push the 3rd
element, we overflow the array of size 2 and double the array size to n = 4. Following
this pattern, we see that we will overflow with push numbers 5, 9, and 17, resulting in the
creation of new arrays of sizes 8, 16, and 32. The overall cost is 17 for the individual pushes
and 62 = 2 + 4 + 8 + 16 + 32 for the reallocations, for a total of 17 + 62 = 79.

Tokens, Charging, and Amortized Cost: How can we analyze the overall cost for an arbitrary
sequence of pushes and pops? We will show that in any sequence of m pushes and pops, the
overall cost cannot exceed 5m. (Intuitively, we pay a factor of at most 5 for the luxury of
never running out of space in our stack.)

To show this, we will employ a charging argument. Here is a high-level overview. We will play
the role of an accountant. Whenever the user asks us to perform a push or pop operation, we

1You might wonder why we charged 2n for the reallocation cost and not, say n, since this would represent the cost
of copying the elements from the old stack to the new stack. The convenient answer is that it doesn’t matter, since
the there is only a constant factor difference between them, and we will be happy with an asymptotic analysis of the
running time. But this is always the case. If you were to increase the array size by some other function of n, the
amortized cost may be different depending on whether the actual cost is based on the array size before reallocation
versus the array size after reallocation.

Lecture 2 3 Spring 2021



CMSC 420 Dave Mount

will assess the user a fixed charge of 5 work tokens. We will store our work tokens in a bank
account, from which we will make withdrawals to pay for the actual costs (as defined above).
Most of the time, the operation will not involved any reallocation. We will take one of the
5 work token to pay the actual cost and put the remaining 4 tokens in our bank account.
We will show that, whenever it is time to perform a reallocation, we will always have enough
work tokens in our bank account to pay the actual costs. Since we charge 5 tokens for each
operation, it follows that the actual costs for any sequence of m operations never exceeds 5m.

1 11 17Actual cost:

Collected tokens 5 5 5 5

Total = 20

Total = 20

8

16
push

push
push

push

+ + +

+ + +

5 6 7 8 9

Fig. 3: Amortized analysis of doubling reallocation.

An example is shown in Fig. 3. Let suppose that the current array has size 8 and it contains
5 elements. We are asked to perform 4 consecutive pushes. The first 3 are all cheap and cost
1 + 1 + 1 = 3. The last one causes the array to overflow to 9 elements, which necessitates
that we reallocate to an array of size 16 for a total cost of 16 + 1 = 17. The overall actual
cost is 3 + 17 = 20. We charged the user 5 tokens for each operation. Thus, the total in our
bank account is 4 · 5 = 20, exactly what we need to pay for the actual costs! Did we just get
lucky or is this always true? The following theorem shows that this is always true.

Theorem: Starting with an empty stack, any sequence of m push/pop operations to our
dynamically allocated stack has a total actual cost of at most 5m. (That is, the amortized
cost of each stack operation is 5.)

Proof: Let’s take the sequence of length m and break it into subsequences by splitting it
just after each array reallocation. Let’s call each subsequence a run. Each run, except
possibly the last, consists of a sequence of cheap operations, and its last operation causes
a reallocation. We will show that the number of tokens collected during each run suffices
to pay the actual costs of the run. To simplify the analysis, we will ignore the first and
last runs. (We will leave the full proof as an exercise.)

Consider the state of affairs at the start of a run. We have just reallocated an array
of some size n, creating an array of size 2n, and (because we just overflowed an array
of size n) we know that the current array must have n + 1 actual elements. When the
run ends, we have just overflowed the 2n array, so there must be 2n + 1 elements in the
stack. Thus, there must be at least (2n + 1)− (n + 1) = n push and pop operations in
this run. This means that we have collected a total of at least 5n work tokens in the
run. We take away one token to pay for the actual cost of each operation, which leaves
us at least 4n tokens in our bank account. The next reallocation results in doubling our
array size to 4n for an actual cost of 4n, but since we have at least 4n tokens in our
bank account, we can pay for it.

Lecture 2 4 Spring 2021



CMSC 420 Dave Mount

In summary, by charging 5 work tokens for each of the m operations, we have enough
accumulated tokens to pay the total actual costs for all these operations. This implies
that the total actual costs cannot be more than 5m, as desired.

Okay, we have just shown that doubling works. What about other possible strategies?

Linear growth: What if, rather than doubling, we reallocate by adding a fixed increment,
say going from n elements to n + c elements for some large integer constant c ≥ 1? So,
the allocated stack sizes would be multiples of c, 〈c, 2c, 3c, . . . , kc, . . .〉.

Exponential growth: What if, rather than doubling, we reallocated by adding a fixed con-
stant factor, say going from n elements to dcne for some constant c > 1? So, the allocated
stack sizes would be powers of c, 〈1, c, c2, c3, . . . , ck, . . .〉.

Doubly-exponential growth: What if, rather than doubling, we squared the size of the
array, going from n to n2? So, the allocated stack sizes would be 〈c, c2, c4, c8, . . . , c2k , . . .〉.

We will leave the analyses of these cases as an exercise, but (spoiler alert!) the fixed-increment
method will not yield a constant amortized cost, the constant-factor expansion will yield a
constant amortized cost (but the factor 5 with change). The repeated squaring depends on
which cost model we use (whether the cost depends on the size before reallocation or after
reallocation).

Multilists and Sparse Matrices: Although lists are very basic structures, they can be combined
in numerous nontrivial ways. A multilist is a structure in which a number of lists are combined
to form a single aggregate structure. Java’s ArrayList is a simple example, in which a
sequence of lists are combined into an array structure. A more interesting example of this
concept is its use to represent a sparse matrix.

Recall from linear algebra that a matrix is a structure consisting of n rows and m columns,
whose entries are drawn from some numeric field, say the real numbers. In practice, n and m
can be very large, say on the order of tens to hundred of thousands. For example, a physicist
who wants to study the dynamics of a galaxy might model the n stars of the galaxy using an
n × n matrix, where entry A[i, j] stores the gravitational force that star i exerts on star j.
The number of entries of such a matrix is n2 (and generally nm for an n×m matrix). This
may be impractical if n is very large.

The physicist knows that most stars are so far apart from each other that (due to the inverse
square law of gravity), only a small number of matrices are significant, and all the others could
be set to zero. For example, n = 10, 000 but a star typically exerts a significant gravitational
pull on only its 20 nearest stellar neighbors, then only 20/10, 000 = 0.02% of the matrix
entries are nonzero. Such a matrix in which only a small fraction of the entries are nonzero
is called sparse.

We can use a multilist representation to store sparse matrices. The idea is to create 2n linked
lists, one for each row and one for each column. Each entry of each list stores five things, its
row and column index, its numeric value, and links to the next items in the current row and
current column (see Fig. 4). We will not discuss the technical details, but all the standard
matrix operations (such as matrix multiplication, vector-matrix multiplication, transposition)
can be performed efficiently using this representation.

As a challenge, you might think of how you would write a program to perform matrix multi-
plication using such a representation. The running time should be “sensitive” to the number
of entries in the two matrices.

Lecture 2 5 Spring 2021



CMSC 420 Dave Mount

Matrix contents

0

15

0

77

85

0

22

0

0

0

0

39

67

99

0

0

0

1

2

3

Row

0 1 2 3

Column

1501

7703

2212

3923

8510 6730

9931

row col val

next in col
next in row

Node structure

0

1

2

3

0 1 2 3

Fig. 4: Sparse matrix representation using a multilist structure.

Lecture 2 6 Spring 2021


