
CMSC 420 Dave Mount

CMSC 420: Lecture 3
Rooted Trees and Binary Trees

Tree Definition and Notation: Trees and their variants are among the most fundamental data
structures. A tree is a special class of graph. Recall from your previous courses that a
graph G = (V,E) consists of a finite set of vertices (or nodes) V and a finite set of edges E.
Each edge is a pair of nodes. In an undirected graph (or simply “graph”), the edge pairs are
unordered, and in a directed graph (or “digraph”), the edge pairs are ordered. An undirected
graph is connected if there is path between any pair of nodes.

Graph (Undirected) Digraph (Directed)

(a) (b)

v1

v2
v5

v4

v3 v6

v7

v1

v2
v5

v4

v6

v7

v3

Fig. 1: Graphs: (a) undirected (b) directed.

The most general form of a tree, called a free tree, is simply a connected, undirected graph
that has no cycles (see Fig. 2(a)). An example of a free tree is the minimum cost spanning
tree (MST) of a graph.

Free tree (no root)

v1

v3

v2

v4

v6v7

v8

v5

v9

Rooted tree

v1

v3v2 v4

v6 v7 v8v5

v9 v10

r

T1 T2 Tk

root

leaves

(a) (b) (c)

Recursive definition

Fig. 2: Trees: (a) free tree, (b) rooted tree, (c) recursive definition.

Since we will want to use trees for applications in searching, it will be useful to assign some
sense of order and direction to our trees. This will be done by designating a special node,
called the root. In the same manner as a family tree, we think of the root as the ancestor of
all the other nodes in the tree, or equivalently, the other nodes are descendants of the root.
Nodes that have no descendants are called leaves (see Fig. 2(b)). All the others are called
internal nodes. Each node of the tree can be viewed as the root of a subtree, consisting of
this node an all of its descendants. Here is a formal (recursive) definition of a rooted tree:

Lecture 3 1 Spring 2021



CMSC 420 Dave Mount

Rooted tree: Is either:

(i) A single node, or

(ii) A collection of one more more rooted trees {T1, . . . , Tk} joined under a common root
node (see Fig. 2(c)).

In case (ii), the roots of the subtrees T1, . . . , Tk are the children of the root node. The degree
of a node is defined to be its number of children. (Thus, leaves have degree zero.) Note that
there is no order among the children (but we will introduce this below with the concept of
ordered tress). Since we will be dealing with rooted trees almost exclusively for the rest of
the semester, when we say “tree” we will mean “rooted tree.” We will use the term “free
tree” otherwise.

Terminology: There is a lot of notation involving trees. Most terms are easily understood from
the family-tree analogy. Every non-root node is descended from its parent, and the directed
descendants of any node are called its children (see Fig. 3(a)). Two nodes that share a
common parent are called siblings, and other relations (e.g., grandparent, grandchild, first-
cousin, second-cousin, etc.) follow analogously.

(a) (b)

0

1

2

3

4

Depth:

Height = 4v

parent(v)

grandparent(v)

children of vsiblings of v

v

Fig. 3: (a) “Family” relations, (b) depth and height.

The depth of a node in the tree is the length (number of edges) of the (unique) path from the
root to that node. Thus, the root is at depth 0. The height of a tree is the maximum depth of
any of its nodes (see Fig. 1(b)). For example, the tree of Fig. 2(b) is of depth 3, as evidenced
by nodes v9 and v10, which are at this depth. As we defined it, there is no special ordering
among the children of a node. A rooted tree is ordered if there is a total order defined on the
children of each node.

Representing Rooted Trees: Rooted trees arise in many applications in which hierarchies exist.
Examples include computer file systems, hierarchically-based organizations (e.g., military and
corporate), documents and reports (volume→ chapter→ section . . . paragraph). There are a
number of ways of representing rooted trees. Later we will discuss specialized representations
that are tailored for special classes of trees (e.g., binary search trees), but for now let’s consider
how to represent a “generic” rooted tree.

The idea is to think of each node of the tree as containing a pointer to the head of a linked list
of its children, called its firstChild. Since a node may generally have siblings, in addition
it will have a pointer to its next sibling, called nextSibling. Finally, each node will contain a

Lecture 3 2 Spring 2021



CMSC 420 Dave Mount

data element (which we will also refer to as its entry), which will depend on the application
involved. This is illustrated in Fig. 4(a). Fig. 4(b) illustrates how the tree in Fig. 1(b) would
be represented using this technique.

(a) (b)

v1

v2 v3 v4

v5 v6

v9 v10

v7 v8

root

data

firstChild

nextSibling

Fig. 4: The “binary” representation of a rooted tree from Fig. 2(b).

Because each node stores two pointers (references), we will often refer to this as the binary
representation of a rooted tree. Note that this is “minimal” representation. In practice,
we may wish to add additional information. (For example, we may also wish to include a
reference to each node’s parent, the height of a node’s subtree, and/or the number of nodes
within each node’s subtree.)

Binary Trees: Among rooted trees, by far the most popular in the context of data structures is
the binary tree. A binary tree is a rooted, ordered tree in which every non-leaf node has two
children, called left and right (see Fig. 5(a)). We allow for a binary tree to empty. (We will
see that, like the empty string, it is convenient to allow for empty trees.)

` m

(a) (b)

d

h i

e

j k

b c

f g

a

d

h i

b c

f

g

a

e d

h i

b c

f

g

a

e

(c)

Fig. 5: Binary trees: (a) standard definition, (b) full binary tree, (c) extended binary tree.

Binary trees can be defined more formally as follows. First, an empty tree is a binary tree.
Second, if TL and TR are two binary trees (possibly empty) then the structure formed by
making TL and TR the left and right children of a node is also a binary tree. TL and TR are
called the subtrees of the root. If both children are empty, then the resulting node is a leaf.

Note that, unlike standard rooted trees, there is a difference between a node that has just
one child on its left side as opposed to a node that has just one child on its right side. All the
definitions from rooted trees (parent, sibling, depth, height) apply as well to binary trees.

Allowing for empty subtrees can make coding tricky. In some cases, we would like to forbid

Lecture 3 3 Spring 2021



CMSC 420 Dave Mount

such binary trees. We say that a binary tree is full if every node has either zero children (a
leaf) or exactly two (an internal node). An example is shown in Fig. 5(b).

Another approach to dealing with empty subtrees is through a process called extension. This
is most easily understood in the context of the tree shown in Fig. 5(a). We extend the tree
by adding a special external node to replace all the empty subtrees at the bottom of the tree.
The result is called a extended tree. (In Fig. 5(c) the external nodes are shown has squares.)
This has the effect of converting an arbitrary binary tree to a full binary tree.

Java Representation: The typical Java representation of a tree as a data structure is given
below. The data field contains the data for the node and is of some generic entry type E. The
left field is a pointer to the left child (or null if this tree is empty) and the right field is
analogous for the right child.

Binary Tree Node

class BTNode <E> {

E entry; // this node’s data

BTNode <E> left; // left child

BTNode <E> right; // right child

// ... remaining details omitted

}

As with our rooted-tree representation, this is a minimal representation. Perhaps the most
useful augmentation would be a parent link.

Binary trees come up in many applications. One that we will see a lot of this semester is
for representing ordered sets of objects, a binary search tree. Another is an expression tree,
which is used in compiler design in representing a parsed arithmetic exception (see Fig. 6).

Traversals: There are a number of natural ways of visiting or enumerating every node of a tree.
For rooted trees, the three best known are preorder, postorder, and (for binary trees) inorder.
Let T be a tree whose root is r and whose subtrees are T1, . . . , Tk for k ≥ 0. They are all
most naturally defined recursively. (Fig. 6 illustrates these in the context of an expression
tree.)

Preorder: Visit the root r, then recursively do a preorder traversal of T1, . . . , Tk.

Postorder: Recursively do a postorder traversal of T1, . . . , Tk and then visit r. (Note that
this is not the same as reversing the preorder traversal.)

Inorder: (for binary trees) Do an inorder traversal of TL, visit r, do an inorder traversal of
TR.

+

* -

/ Preorder: / * + a b c - d e

Postorder: a b + c * d e - /

Inorder: a + b * c / d - e
a b

c d e

Fig. 6: Expression tree for ((a + b) ∗ c)/(d− e)) and common traversals.

Lecture 3 4 Spring 2021



CMSC 420 Dave Mount

These traversals are most easily coded using recursion. The code block below shows a possible
way of implementing the preorder traversal in Java. The procedure visit would depend on
the specific application. The algorithm is quite efficient in that its running time is proportional
to the size of the tree. That is, if the tree has n nodes then the running time of these traversal
algorithms are all O(n).

Preorder Traversal

void preorder(BTNode v)

{

if (v == null) return; // empty subtree - do nothing

visit(v); // visit (depends on the application)

preorder(v.left); // recursively visit left subtree

preorder(v.right); // recursively visit right subtree

}

These are not the only ways of traversing a tree. For example, another option would be
breadth-first, which visits the nodes level by level: “/ * - + c d e a b.” An interesting
question is whether a traversal uniquely determines the tree’s shape. The short answer is
no, but if you have an extended tree and you know which nodes are internal and which are
leaves (as is the case in the expression tree example from Fig. 6), then such a reconstruction
is possible. Think about this.

Extended Binary Trees: To motivate our next topic, let’s consider the utilization of space in
our trees. Recall the binary tree shown in Fig. 5(a). It has nine nodes, and each node has two
child links, for a total of 18 links. We have eight actual links in the tree, which means that
the remaining 10 links are null. Thus, nearly half of the child links are null! This is not
unusual, as the following theorem states. (Take note the proof structure, since it is common
for proofs involving binary trees.)

Claim: A binary tree with n nodes has n + 1 null child links.

Proof: (by induction on the size of the tree) Let x(n) denote the number of null child links
in a binary tree of n nodes. We want to show that for all n ≥ 0, x(n) = n+1. We’ll make
the convention of defnining x(0) = 1. (If you like, you can think of the null pointer to
the root node as this link.)

For the basis case, n = 0, by our convention x(0) = 1, which satisfies the desired relation.

For the induction step, let’s assume that n ≥ 1. The induction hypothesis states that,
for all n′ < n, x(n′) = n′ + 1. A binary tree with at least one node consists of a root
node and two (possibly empty) subtrees, TL and TR. Let nL and nR denote the numbers
of nodes in the left and right subtrees, respectively. Together with the root, these must
sum to n, so we have n = 1+nL+nR. By the induction hypothesis, the numbers of null
links in the left and right subtrees are x(nL) = nL + 1 and x(nR) = nR + 1. Together,
these constitute all the null links. Thus, the total number of null links is

x(n) = x(nL) + x(nR) = (nL + 1) + (nR + 1) = (1 + nL + nR) + 1 = n + 1,

as desired.

In large data structures, these null pointers represent quite a significant wastage of space.
What can we do about this? One idea is to distinguish two different node types, one for

Lecture 3 5 Spring 2021



CMSC 420 Dave Mount

internal nodes, which have (non-null) child links and another for leaves, which need no child
links. One way to construct such a tree is called “extension.” An extended binary tree is
constructed by replacing each null link with a special leaf node, called an external node.
(The other nodes are called internal nodes.) An example of an extended binary tree is shown
in Fig. 5(c). Because we replace each null link with a leaf node, we have the following direct
corollary from our previous theorem.

Corollary: An extended binary tree with n internal nodes has n + 1 external nodes, and
hence 2n + 1 nodes altogether.

The key “take-away” from this proof is that over half of the nodes in an extended binary tree
are leaf nodes. In fact, it is generally true that if the degree of a tree is two or greater, leaves
constitute the majority of the nodes.

Threaded Binary Trees: We have seen that extended binary trees provide one way to deal with
the wasted space caused by null pointers in the nodes of a binary tree. In this section we
will consider another rather cute use of these pointers.

Recall that binary tree traversals are naturally defined recursively. Therefore a straightfor-
ward implementation would require extra space to store the stack for the recursion. Is some
way to traverse the tree without this additional storage? The answer is yes, and the trick
is to employ each null pointer encode some additional information to aid in the traversal.
Each left-child null pointer stores a reference to the node’s inorder predecessor, and each
right-child null pointer stores a reference to the node’s inorder successor. The resulting rep-
resentation is called a threaded binary tree. (For example, in Fig. 7(a), we show a threaded
version of the tree in Fig. 5(b)).

(a) (b)

d

h i

b c

f

g

a

e

v

u

u

v

(c)

Fig. 7: A Threaded Tree.

We also need to add a special “mark bit” to each child link, which indicates whether the link
is a thread or a standard parent-child link. The node structure is shown below.

Let us consider how to do an inorder traversal in a threaded-tree representation. Suppose
that we are currently visiting a node u. How do we find the inorder successor of u? First, if
u’s right-child link is a thread, then we just follow it (see Fig. 7(b)). Otherwise, we go the
node’s right child, and then traverse left-child links until reaching the bottom of the tree, that
is a threaded link (see Fig. 7(c)).

For example, in Fig. 7(b), if we start at d, the thread takes us directly to a, which is d’s
inorder successor. In Fig. 7(c), if we start at a, then we follow the right-child link to b, and
then follow left-links until arriving at d, which is the inorder successor. Of course, to turn

Lecture 3 6 Spring 2021



CMSC 420 Dave Mount

Threaded Binary Tree Node

class ThreadBTNode <E> {

E entry; // this node’s data

Boolean leftIsThread; // left child link is a thread

Boolean rightIsThread; // right child link is a thread

ThreadBTNode <E> left; // left child

ThreadBTNode <E> right; // right child

// ... remaining details omitted

}

Inorder Successor in a Threaded Tree

ThreadBTNode inorderSuccessor(ThreadBTNode v) {

ThreadBTNode u = v.right; // go to right child

if (v.rightIsThread) return u; // if thread , then done

while (!u.leftIsThread) { // else u is right child

u = u.left; // go to left child

} // ... until hitting thread

return u;

}

this into a complete traversal function, we would need to start by finding the first inorder
node in the tree. We’ll leave this as an exercise.

Threading is more of a “cute trick” than a common implementation technique with binary
trees. Nonetheless, it is representative of the number of clever ideas that have been developed
over the years for representing and processing binary trees.

Complete Binary Trees: We have discussed linked allocation strategies for rooted and binary
trees. Is it possible to allocate trees using sequential (that is, array) allocation? In general
it is not possible because of the somewhat unpredictable structure of trees (unless you are
willing to waste a lot of space). However, there is a very important case where sequential
allocation is possible.

Complete Binary Tree: Every level of the tree is completely filled, except possibly the
bottom level, which is filled from left to right.

It is easy to verify that a complete binary tree of height h has between 2h and 2h+1 − 1
nodes, implying that a tree with n nodes has height O(log n) (see Fig. 8). (We leave these as
exercises involving geometric series.)

The extreme regularity of complete binary trees allows them to be stored in arrays, so no
additional space is wasted on pointers. Consider an indexing of nodes of a complete tree from
1 to n in increasing level order (so that the root is numbered 1 and the last leaf is numbered
n). Observe that there is a simple mathematical relationship between the index of a node
and the indices of its children and parents. In particular:

leftChild(i): if (2i ≤ n) then 2i, else null.

rightChild(i): if (2i + 1 ≤ n) then 2i + 1, else null.

parent(i): if (i ≥ 2) then bi/2c, else null.

Lecture 3 7 Spring 2021



CMSC 420 Dave Mount

d

i

b c

fe

a

h j k `

g

a b c d e f g h i j k m

0 1 2 3

1

2 3

4 5 6

8 10 12

7

9 11

4 5 6 7 8 9 10 11 12

m
13

`

13

Fig. 8: A complete binary tree.

As an exercise, see if you can give a formula to compute the sibling of node i and the depth
of node i.

Observe that the last leaf in the tree is at position n, so adding a new leaf simply means
inserting a value at position n+1 in the list and updating n. Since arrays in Java are indexed
from 0, omitting the 0th entry of the matrix is a bit of wastage. Of course, the above rules
can be adapted to work even if we start indexing at zero, but they are not quite so simple.

Lecture 3 8 Spring 2021


