
CMSC 420 Dave Mount

CMSC 420: Lecture 5
AVL Trees

Balanced Binary Trees: The binary search trees described in the previous lecture are easy to
implement, but they suffer from the fact that if nodes are inserted in a poor order (e.g.,
increasing or decreasing) then the height of the tree can be much higher than the ideal height
of O(log n). This raises the question of whether we can design a binary search tree that is
guaranteed to have O(log n) height, irrespective of the order of insertions and deletions.

Today we will consider the oldest, and perhaps best known example of such a data structure
is the famous AVL tree, which was discovered way back in 1962 by G. Adelson-Velskii and E.
Landis (and hence the name “AVL”).

AVL Trees: AVL tree’s are height-balanced binary search trees. In an absolutely ideal height-
balanced tree, the two children of any internal node would have equal heights, but it is
not generally possible to achieve this goal. The most natural relaxation of this condition is
expressed in the following invariant:

AVL balance condition: For every node in the tree, the absolute difference in the heights
of its left and right subtrees is at most 1.

AVL Tree: A binary search tree that satisfies the AVL balance condition.

For any node v of the tree, let height(v) denote the height of the subtree rooted at v (shown
in blue in Fig. 1(a)). It will be convenient to define the height of an empty tree (that is, a
null pointer) to be −1.1 Define the balance factor of v, denoted balance(v) to be

balance(v) = height(v.right)− height(v.left)

(see Fig. 1(b)). The AVL balance condition is equivalent to the requirement that balance(v) ∈
{−1, 0,+1} for all nodes v of the tree. (Thus, Fig. 1(b) is an AVL tree, but the tree of Fig. 1(c)
is not because node 10 has a balance factor of +2.) If balance(v) < −1, we say that the subtree
is left heavy and if balance(v) > +1, we say that the subtree is right heavy.

1

14

5

9

10

63

4

-1

+1-1

0 00

00
1

14

5

9

10

63

4

0

+2-1

0 -10

00
12

0
1

14

5

9

10

63

4

3

12

1 00

00

Balance factors Not an AVL tree

!

Subtree heights

(a) (b) (c)

Fig. 1: AVL-tree balance condition.

1Why not zero? Well, we already defined the height of leaves to be zero, and we need to distinguish these two.

Lecture 5 1 Spring 2021



CMSC 420 Dave Mount

Worst-case Height: Before discussing how we maintain this balance condition we should con-
sider the question of whether this condition is strong enough to guarantee that the height
of an AVL tree with n nodes is O(log n). Interestingly, the famous Fibonacci numbers
(0, 1, 1, 2, 3, 5, 8, . . .) will arise in the analysis. Recall that for h ≥ 0, the hth Fibonacci
number, denoted Fh is defined by the following recurrence:

F0 = 0, F1 = 1, and Fh = Fh−1 + Fh−2, for h ≥ 2.

An important and well-known property of the Fibonacci numbers is that they grow expo-
nentially. In particular, Fh ≈ ϕh/

√
5, where ϕ = (1 +

√
5)/2 ≈ 1.618 is the famous Golden

Ratio.2

Lemma: An AVL tree of height h ≥ 0 has Ω(ϕh) nodes, where ϕ = (1 +
√

5)/2.

Proof: For h ≥ 0, let N(h) denote the minimum possible number of nodes in binary tree of
height h that satisfies the AVL balance condition. We will prove that N(h) = Fh+3 − 1
(see Fig. 2). The result will then follow from the fact that Fh+3 ≈ ϕh+3/

√
5, which is

equal to ϕh up to constant factors (since ϕ itself is a constant).

N(h) 1

h 0

2

1

4

2

7

3

12

4

20

5

Fh+3 2 3 5 8 13 21

Fig. 2: Minimal AVL trees and Fibonacci numbers.

Our proof is by induction on h. First, observe that a tree of height zero consists of a
single root node, so N(0) = 1. Also, the smallest possible AVL tree of height one consists
of a root and a single child, so N(1) = 2. By definition of the Fibonacci numbers, we
have F0+3 = 2 and F1+3 = 3, and thus N(i) = Fi+3 − 1, for these two basis cases.

For h ≥ 2, let hL and hR denote the heights of the left and right subtrees, respectively.
Since the tree has height h, one of the two subtrees must have height h − 1, say, hL.
To minimize the overall number of nodes, we should make the other subtree as short as
possible. By the AVL balance condition, this implies that hR = h − 2. Adding a +1
for the root, we have N(h) = 1 + N(h − 1) + N(h − 2). We may apply our induction
hypothesis to conclude that

N(h) = 1 + N(h− 1) + N(h− 2) = 1 + (Fh+2 − 1) + (Fh+1 − 1)

= Fh+2 + Fh+1 − 1 = Fh+3 − 1,

as desired.
2Here is a sketch of a proof. Let us conjecture that Fh ≈ ϕh for some constant ϕ. Since the function grows very

(exponentially) fast, we may ignore the tiny contribution of the +1 in the definition for large h. Substituting our
conjectured value for Fh into the above recurrence, we find the ϕ satisfies ϕh = ϕh−1 +ϕh−2. Removing the common
factor of ϕh−2, we have ϕ2 = ϕ + 1, that is, ϕ2 − ϕ − 1 = 0. This is a quadratic equation, and by applying the
quadratic formula, we conclude that ϕ = (1 +

√
5)/2.

Lecture 5 2 Spring 2021



CMSC 420 Dave Mount

Corollary: An AVL tree with n nodes has height O(log n).

Proof: Let lg denote logarithm base 2. From the above lemma, up to constant factors we
have n ≥ ϕh, which implies that h ≤ logϕ n = lg n/ lgϕ. Since ϕ > 1 is a constant, so is
logϕ. Therefore, h is O(log n). (If you work through the math, the actual bound on the
height is roughly 1.44 lg n. In other words, in the worst case, an AVL tree is suboptimal
with respect to height by a factor of at most 1.44)

Since the height of the AVL tree is O(log n), it follows that the find operation takes this
much time. All that remains is to show how to perform insertions and deletions in AVL trees,
and how to restore the AVL balance condition efficiently after each insertion or deletion.

Rotation: In order to maintain the tree’s balance, we will employ a simple operation that locally
modifies subtree heights, while preserving the tree’s inorder properties. This operation is
called rotation. It comes in two symmetrical forms, called a right rotation and a left rotation
(see Fig. 3(a) and (b)).

Right rotation

(a) (b)

d

b

A C

E

b

d

EC

A

Left rotation

d

b

A C

E

b

d

EC

A

p

q p

q

q

p q

p

Fig. 3: (Single) Rotations. (Triangles denote subtrees, which may be null.)

We have intentionally labeled the elements of Fig. 3 to emphasize the fact that the inorder
properties of the tree are preserved. That is, A < b < C < d < E. The code fragment below
shows how to apply a right and left rotations to a node p, to a generic node of a binary search
tree, BSTNode. As has been our practice, we return a pointer to the modified subtree (in order
to modify the child link pointing into this subtree).

Binary-Tree Rotations
BSTNode rotateRight(BSTNode p) { // right rotation at p

BSTNode q = p.left;

p.left = q.right;

q.right = p;

return q;

}

BSTNode rotateLeft(BSTNode p) { ... symmetrical ... }

Unfortunately, a single rotation is not always be sufficient to rectify a node that is out of
balance. To see why, observe that the single rotation does not alter the height of subtree C.
If it is too heavy, we need to do something else to fix matters. This is done by combining

Lecture 5 3 Spring 2021



CMSC 420 Dave Mount

two rotations, called a double rotation. They come in two forms, left-right rotation and right-
left rotation (Fig. 4). To help remember the name, note that the left-right rotation, called
rotateLeftRight(p), is equivalent to performing a left rotation to the p.left (labeled b in
Fig. 4(a)) followed by a right rotation to p (labeled d in Fig. 4(a)). The right-left rotation is
symmetrical (see Fig. 4(b)).

Left-Right rotation

(a) (b)

d

b

A

C ′

E

Right-Left rotation

c

C ′′

db

A C ′ E

c

C ′′

b

d

E

c

C ′′

A

C ′

db

A C ′ E

c

C ′′

p p

Fig. 4: Double rotations (rotateLeftRight(p) and RotateRightLeft(p)).

Insertion: The insertion routine for AVL trees starts exactly the same as the insertion routine for
standard (unbalanced) binary search trees. In particular, we search for the key and insert a
new node at the point that we fall out of the tree. After the insertion of the node, we must
update the subtree heights, and if the AVL balance condition is violated at any node, we then
apply rotations as needed to restore the balance.

The manner in which rotations are applied depends on the nature of the imbalance. An
insertion results in the addition of a new leaf node, and so the balance factors of the ancestors
can be altered by at most ±1. Suppose that after the insertion, we find that some node has a
balance factor of −2. For concreteness, let us consider the naming of the nodes and subtrees
shown in Fig. 5, and let the node in equation be d. Note that this node must be along the
search path for the inserted node, since these are the only nodes whose subtree heights may
have changed. Clearly, d’s left subtree, is too deep relative to d’s right subtree E. Let b
denote the root of d’s left subtree.

At this point there are two cases to consider. Either b’s left child is deeper or its right child
is deeper. (The subtree that is deeper will be the one into which the insertion took place.)

Let’s first consider the case where the insertion took place in the the subtree A (see Fig. 5(b)).
In this case, we can restore balance by performing a right rotation at node d. This operation
pulls the deep subtree A up by one level, and it pushes the shallow subtree E down by one
level (see Fig. 5(c)). Observe that the depth of subtree C is unaffected by the operation. It
follows that the balance factors of the resulting subtrees rooted at b and d are now both zero.
The AVL balance condition is satisfies by all nodes, and we are in good shape.

Next, us consider the case where the insertion occurs within subtree C (see Fig. 6(b)). As
observed earlier, the rotation at d does not alter C’s depth, so we will need to do something
else to fix this case. Let c be the root of the subtree C, and let C ′ and C ′′ be its two subtrees
(either of these might be null). The insertion took place into either C ′ or C ′′. (We don’t care
which, but the “?” in the figure indicate our uncertainty.) We restore balance by performing

Lecture 5 4 Spring 2021



CMSC 420 Dave Mount

(b)

d

b

A C

E

-1

0

new insertion

d

b

A C

E

-2 !!

-1

d

b

A

C E

0

0insert rotate

(a) (c)

Fig. 5: Restoring balance after insertion through a single rotation.

two rotations, first a left rotation at b and then a right rotation at d (see Fig. 6(c)). This double
rotation has the effect of moving the subtree E down one level, leaving A’s level unchanged,
and pulling both C ′ and C ′′ up by one level.

(b)

d

b

A C

E

-1

0
d

b

A

C ′

E

-2 !!

1

d

c

E

0insert rotate

(a) (c)

c

C ′′? ?

double

C ′′

b

A

0 or -1

C ′

insert into C ′ or C ′′

0 or +1

Fig. 6: Restoring balance after insertion through a double rotation.

The balance factors at nodes b and d will depend on whether the insertion took place into C ′

or C ′′, but irrespective of which, they will be in the range from −1 to +1. The balance factor
at the new root node c is now 0. So, again we are all good with respect to the AVL balance
condition.

Insertion Implementation: The entire insertion procedure for AVL trees is shown in the follow-
ing code fragment. It starts with a few utilities. We assume that we store the height of each
node in a field p.height, which contains the height of the subtree rooted at this node. We
define a utility function height(p), which returns p.height if p is non-null and −1 otherwise.
Based on this we provide a utility function updateHeight, which is used for updating the
height’s of nodes (assuming that their children’s heights are properly computed). We also
provide a utility for computing balance factors and the rotation functions. We omit half of
the rotation functions since they are symmetrical, just with left and right swapped.

An interesting feature of the insertion algorithm (which is not at all obvious) is that whenever
rebalancing is required, the height of the modified subtree is the same as it was before the
insertion. This implies that no further rotations are required. (This is not the case for
deletion, however.)

Deletion: After having put all the infrastructure together for rebalancing trees, deletion is actually
relatively easy to implement. As with insertion, deletion starts by applying the deletion

Lecture 5 5 Spring 2021



CMSC 420 Dave Mount

AVL Tree Utilities and Insertion
int height(AvlNode p) { return p == null ? -1 : p.height; }

void updateHeight(AvlNode p) { p.height = 1 + max(height(p.left), height(p.right));}

int balanceFactor(AvlNode p) { return height(p.right) - height(p.left); }

AvlNode rotateRight(AvlNode p) // right single rotation

{

AvlNode q = p.left;

p.left = q.right; // swap inner child

q.right = p; // bring q above p

updateHeight(p); // update subtree heights

updateHeight(q);

return q; // q replaces p

}

AvlNode rotateLeft(AvlNode p) { ... symmetrical to rotateRight ... }

AvlNode rotateLeftRight(AvlNode p) // left-right double rotation

{

p.left = rotateLeft(p.left);

return rotateRight(p);

}

AvlNode rotateRightLeft(AvlNode p) { ... symmetrical to rotateLeftRight ... }

AvlNode insert(Key x, Value v, AvlNode p) {

if (p == null) { // fell out of tree; create new node

p = new AvlNode(x, v, null, null);

}

else if (x < p.key) { // x is smaller - insert left

p.left = insert(x, p.left); // ... insert left

else if (x > p.key) { // x is larger - insert right

p.right = insert(x, p.right); // ... insert right

}

else throw DuplicateKeyException; // key already in the tree?

return rebalance(p); // rebalance as needed

}

AvlNode rebalance(AvlNode p) {

if (p == null) return p; // null - nothing to do

if (balanceFactor(p) < -1) { // left heavy?

if (height(p.left.left) >= height(p.left.right)) { // left-left heavy?

p = rotateRight(p); // fix with single rotation

else // left-right heavy?

p = rotateLeftRight(p); // fix with double rotation

} else if (balanceFactor(p) > +1) { // right heavy?

if (height(p.right.right) >= height(p.right.left)) { // right-right heavy?

p = rotateLeft(p); // fix with single rotation

else // right-left heavy?

p = rotateRightLeft(p); // fix with double rotation

}

updateHeight(p); // update p’s height

return p; // return link to updated subtree

}

Lecture 5 6 Spring 2021



CMSC 420 Dave Mount

algorithm for standard (unbalanced) binary search trees. Recall that this breaks into three
cases, leaf, single child, and two children. This part of the deletion process is identical to
the standard case. The only change is that (as in insertion) we restore balance to the tree
by invoking the function rebalance(p) just prior to returning from each node (starting with
the parent of the replacement node). Even though we design this piece of code to work in
the case of insertion, it can be shown that it works just as well for deletion.

In Fig. 7, we illustrate a deletion of a node (from the subtree E) which can be remedied by
a single rotation. This happens because d is left heavy following the deletion, and the left
child of the left subtree (A) is at least as tall as the right child (C). (The “?” in our figures
illustrate places where the subtree’s height is not fully determined. For this reason, some of
the balance factors are listed as “x or y” to indicate the possible options.)

(b)

d

b

A C

E

-1

-1 or 0

deleted item

delete

(a) (c)

d

b

A C

E

-2 !!

?

C

?

b

A
d

CC

?

E

0 or +1

0 or -1-1 or 0

rotate

Fig. 7: Restoring balance after deletion with single rotation.

In Fig. 8, we illustrate an instance where a double-rotation is needed. In this case, d is
left heavy following the deletion, but the left-right subtree (C) is strictly taller than the left
subtree (A).

E

deleted item

E

(b)

d

b

A C

-1

+1
d

b

A
C ′

-2 !!

+1

d

c

E

0delete rotate

(a) (c)

c

C ′′

double

b

A

0 or -1 0 or +1

? ?

C ′

?
C ′′

?

Fig. 8: Restoring balance after deletion with double rotation.

Note that in the case of the double rotation, the height of the entire tree rooted at d has de-
creased by 1. This means that further ancestors need to be checked for the balance condition.
Unlike insertion, where at most one rebalancing operation is needed, deletion could result in
a cascade of O(log n) rebalancing operations.

Lazy Deletion: The deletion code for standard binary search tree (and, by extension, AVL trees
and other balanced search trees) is generally more complicated than the insertion code. An
intriguing alternative for avoiding coding up the deletion algorithm is called lazy deletion.

Lecture 5 7 Spring 2021



CMSC 420 Dave Mount

For each node, we maintain a boolean value indicating whether this element is alive or dead.
When a key is deleted, we simply declare it to be dead, but leave it in the tree. If an attempt
is made to insert a value that comes in the same relative order as a dead key, we store the
new key-value pair in the dead node and declare it to now be alive. Of course, your tree
may generally fill up with lots of dead nodes, so lazy deletion is usually applied only in
circumstances where the number of deletions is expected to be significantly smaller than the
number of insertions. Alternatively, if the number dead nodes gets too high, you can invoke a
garbage collection process, which builds an entirely new search tree containing just the alive
nodes.

Lecture 5 8 Spring 2021


