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CMSC 420: Lecture 10
Splay Trees

Recap: We have discussed a number of different search structures for performing the basic ordered-
dictionary operations (insert, delete, and find). Here is a brief review:

(Standard) Binary Search Trees: Very simple, but no effort is made to balance the tree.
Height is O(log n) if keys are inserted in random order, but can be as bad as Ω(n).

AVL Trees: These are height-balanced trees. Height is guaranteed to be O(log n), and all
dictionary operations run in O(log n) time. Each node stores height information (or the
balance factor), and the tree is rebalanced by rotations.

2-3, Red-Black, and AA Trees: 2-3 trees were based on the notion of having a variable-
width node, but the tree was perfectly balanced. Red-black and AA trees were binary
tree encodings of 2-3 trees. For all three, the height is guaranteed to be O(log n), and
all dictionary operations run in O(log n) time.

Treap and Skip Lists: These are randomized structures, which means that they rely on a
random-number generator to determine their structures. All operations run in O(log n)
time in expectation over the random choices. (The user’s actions cannot impact the per-
formance.) The skip list has expected space O(n), but its worst case space is O(n log n).

Beyond Dictionary Operations: There are many other operations, beyond the standard ordered-
dictionary operations (insert, delete, find) that a user might want the data structure to sup-
port. Here are a few examples:

Order-statistic queries: Given an integer k, where 1 ≤ k ≤ n, find the kth smallest element
in the set (see Fig. 1).

1 3 4 7 9 13 15 17 20

kthSmallest(4) = 7 rangeSum(8,16) = 9 + 13 + 15 = 37

Fig. 1: Order-statistic and range queries.

Range queries: Given two keys x0 and x1, report (or generally compute some associative
operation like sum or product over) all the values of the dictionary whose keys lie between
x0 and x1 (see Fig. 1).

Split/Merge: Given a search tree T and a key x, split T into two search trees T1 and T2 such
that all the keys of T1 are ≤ x and all the keys of T2 are > x (see Fig. 2). Conversely,
given two search trees T1 and T2 such that every key of T1 is smaller than every key
of T2, merge them into a single search tree. The target is to solve both problems in
O(log n) time.

Finger-Search Queries: We have just performed a find and located the node containing a
key x. Now, we want to access a key y that is close to x in order. (E.g., you have a
pointer to “Brendan” and now you want to find “Brendon.”) Can this be done faster
than restarting the search from the root?
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T1 T2
T

(T1,T2) = split(T, 11)

T = merge(T1, T2)

11

Fig. 2: Splitting and merging.

Beyond Worst-Case Complexity: In the above data structures, our analysis was based on
worst-case performance. In practice, some queries are more likely than others. If so, expected-
case performance may be more appropriate.

Expected-Case Optimal Search Tree: You are given n keys, {x1, . . . , xn}. Let pi denote
the probability of accessing key xi. Thus, 0 ≤ pi ≤ 1 and

∑n
i=1 pi = 1. Suppose a binary

search tree T stores xi in a node at depth di from the root. The expected search time
for this tree is E(T ) =

∑n
i=1 pidi.

Given the pi’s can we compute the binary search tree T that minimizes E(T )?

The structures we have seen so far do not address this question. There does exist an efficient
algorithm for computing the optimum binary-search tree. (It is a nice exercise in dynamic
programming.) However, in order to compute this data structure, we assume that we know
what the access probabilities. What if they are not known? What if they are known at
some time, but they change over time? In such a dynamic setting, a better solution would
be a self-adjusting tree. This is a tree that dynamically adjusts its structure according to a
dynamically changing set of access probabilities. Intuitively, keys that are frequently accessed
will filter up near the root, and keys that are rarely accessed will slowly fall to the deeper
levels of the search tree.

Achieving this goal in a manner that can be made theoretically rigorous is a challenging
problem. It was solved by Danniel Sleator and Robert Tarjan in 1985 by a data structure,
called a splay tree. The splay tree itself is an amazing idea. While the tree is provably
(theoretically) optimal with respect to a number of different criteria, the efficiency comes at
a cost. Individual operations may take a long time, and efficiency is in the amortized sense.

Splay Trees and Amortization: All the balanced binary tree structures we have seen so far
have two things in common: (1) they use rotations to maintain structure and (2) each node
stores additional information to allow the tree to maintain balance. A splay tree is a binary
search tree, and it uses rotations to maintain its structure, but unlike the others no additional
storage is needed for balance information. (Thus, each node is just a node of a standard binary
search tree. It stores a key, value, left child, and right child. That is all!)

Because a splay tree has no balance information, it is possible for the tree to become very
unbalanced. Splay trees are remarkable in that they are self-adjusting. Having nodes that
are great depth in a binary tree is not a problem per se, until such an element is accessed.
Splay trees employ a clever trick so that whenever a very deep node is accessed, the tree will
restructure itself so that the tree becomes significantly more balanced. This is really quite
clever, when you consider the fact that the tree has no idea whether it is balanced or not!
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This means that, as with standard binary search trees, it is possible that a single access
operation could take as long as Ω(n) time (and not the O(log n) that we would like). However,
splay trees are efficient in the amortized sense:

Splay Tree Performance Bound: Starting with an empty tree, the total time needed to
perform any sequence of m insert/delete/find operations on a splay tree is O(m log n),
where n is the maximum number of nodes in the tree.

Thus, although any individual operation may be quite costly (as high as Ω(n) time), the
average cost of any operation is at most O(log n). This type of analysis (averaging over a
sequence of operations) is called an amortized analysis. In the business world, amortization
refers to the process of paying off a large payment over time in small installments. Here we
are paying for the total running time of the data structure’s algorithms over a sequence of
operations in small installments. Even though each individual operation may be costly, the
overall average is small.

As mentioned above, splay trees tend to bring frequently accessed keys up near the root.
Indeed, it can be shown that if the access probabilities are stable, the cost of splay-tree
operations asymptotically matches the performance of an optimal binary search tree.

No balance information, optimal expected search times, self-adjusting behavior? Splay trees
sound amazing—and they are. However, they are not used that often in practice. In spite of
their cool properties, they tend to be slower in practice than red-black trees, treaps, and skip
lists. So, these other structures tend to be used more often than splay trees.

Splaying: The key to any self-adjusting data structure is the operation that incrementally modifies
the organization of objects in the structure. In the case of a splay tree, this operation is called
splaying. Given a key value x and a splay tree T the operation T.splay(x) searches for the
key x within T , and reorganizes T while rotating the node with key x up to the root of the
tree. If x is not in the tree, either the inorder predecessor or inorder successor of x will be
brought to the root instead.

Here is how T.splay(x) works. We start with the normal binary search descent from the
root of T to find the node p containing key x, or the last node visited before we fall out of
the tree. (Observe that in the latter case, p is either the inorder successor or predecessor of
x, depending on whether we fell out along a null left child link or a null right child link.
Our objective is to bring the node p up to the root.

An idea that doesn’t work: At this point you may see an obvious strategy to bring p to
the root. We walk up the tree to p’s ancestors, applying a rotation at each. While this
will satisfy one of our requirements of moving p to the root, it will not do a good job of
reorganizing the tree. To see why, suppose that we attempt to apply rotations to node
a in Fig. 3. Observe that while a is brought up to the root, the tree is still very skewed
and unbalanced.

A better idea: The poor performance of the single-rotation method suggests that we try
something that “stirs things up” a bit more. Our next idea is to go two nodes at a
time and apply rotations at each of these nodes. For example, in Fig. 4, we see that by
applying two rotations at a time, first at the grandparent and then at the parent has
a dramatically better result on the tree height, cutting it roughly in half. (But will it
work general?)
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Fig. 3: Single rotations up to the root—the tree is still poorly balanced.

e

d
c

b
a

e

d

c
b

a

a

e
d

c
b

g

f

g

f

g

f

a

e
d

c
b

g
f

1

2

1

2

1

2

Fig. 4: Two-at-a-time rotations up to the root—the tree height is cut almost in half.

The above exercise suggests that we work two levels at a time. Here is a more formal descrip-
tion of the splay operation at a single node p of the tree:

� If p has both a parent and grandparent, q and r be the parent and grandparent, respec-
tively. We consider two cases:

– Zig-zig: If p and q are both right children or both left children, we apply a rotation
at r followed by a rotation at q, to bring p to the top of this 3-node ensemble (see
Fig. 5(a)), and continue up the tree.

– Zig-zag: If p and q are left-right or right-left children, we apply a rotation at
q followed by a rotation at r, to bring p to the top of this 3-node ensemble (see
Fig. 5(b)), and continue up the tree.
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Fig. 5: Splaying cases: (a) Zig-Zig, (b) Zig-Zag and (c) Zig.

� Zig: If p is the child of the root, we do a single rotation at the root of T , making p the
new root (see Fig. 5(a)), and are now done.
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� If p is the root of T , we are done.

A full example is shown in Fig. 6. Note that the tree’s inorder structure is preserved. Also
observe that nodes lying on or near the search path to p (such as 1) tend to be lifted much
closer to the root through this operation.
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Fig. 6: The full splay operation on p.

You might wonder why we performed these particular rotations in this particular order. The
situation that we are most concerned about is where the tree is highly imbalanced and we
repeatedly attempt to access elements that are unusually deep in the tree, say much deeper
than O(log n) depth. Such an operation will be expensive. We want to be sure that we cannot
repeat it many times.

Because we rotate as we are backing up the tree, we may assume that the key we sought was
in one of p’s two children (shaded in blue in the figure). Observe in Fig. 5(a) and (b) that
both of these subtrees are lifted up at least one level in the tree following the zig-zig or zig-zag
rotation. Thus, if this were a long search path, then after repeating this operation all the way
to the root, the nodes along this long path would be lifted up to roughly half of their original
level. (The reason we say “halved” is that for every two levels we perform an operation that
lifts each subtree up by at least one level.) Thus, splaying has the desirable effect that it
tends to significantly reduce the length of long search paths, whenever we attempt to access
something within one of these long paths.

You may protest at this point. What about the negative impact splaying has on the levels of
other subtrees (like G in Fig. 5(a))? This is true. Clearly, there must be winners and losers.
But we the accessed node was in p’s subtree, and our principal concern is repeat visits deep
in the tree cannot be allowed to repeat excessively. A certain amount of damage to the rest of
the tree’s structure is the price that we pay for this. But to make this convincing, you should
read the full amortized proof. We will not cover it since it is quite mathematically involved.

Splay Tree Operations: Now that we know how to perform a single splay operation, how to we
use this to perform the basic dictionary operations, insert, delete, and find?

find(x): To find key x in tree T , we simply invoke T.splay(x). If x is in the tree it will be
transported to the root. If after the operation, the root key is not x, we know that x is
not in the dictionary.
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This is a bit weird. In all our previous data structures, the find operation does not alter
the tree structure. Why do it here? Recall that in the case of expected-case optimal
trees, a small number of nodes may have very high access probabilities. The splaying
operation has the tendency to keep these frequently accessed nodes nearest to the root.

insert(x, v): To insert the key-value pair (x, v), we first invoke T.splay(x). If x is already
in the tree, it will be transported to the root, and we can take appropriate action (e.g.,
throw an exception). Otherwise, the root will consist of some key y that is either the
key immediately before x or immediately after x in T . Let us consider the former case
(y < x), since the other case is symmetrical. Let R denote the right subtree of the
root. We know that all the keys in R are greater than x so we create a new root node
containing x and v, and we make R its right subtree (see Fig. 7). The remaining nodes
are hung off as the left subtree L of this node.

y x

y

T
T.splay(x) insert x

(assume y < x)

L

L R R

Fig. 7: Splay-tree insertion of x.

delete(x): To delete x, we first invoke T.splay(x) to bring the deleted node to the root.
If the root’s key is not x, then x is not in the tree, and we can take appropriate error
action. Otherwise, let L and R be the left and right subtrees of the resulting tree (see
Fig. 8). If L is empty, then x is the new smallest key in the tree. We remove x and R
becomes the new tree. We can do the symmetrical thing if R is empty.

xT

L R

x

L

R′
y

R′
y

L

T.splay(x) R.splay(x)

Fig. 8: Splay-tree deletion of x.

Otherwise, both subtrees are nonempty, and we next find an appropriate replacement
node. To do this, we perform R.splay(x). (It might be smarter to flip a coin and do
L.splay(x) half the time for the sake of symmetry. This will not affect the theoretical
analysis of the tree’s performance.) Let’s call the resulting subtree R′. Since x is not in
R and all the keys in this subtree are greater than x, this will bring the smallest key y
of R to the root. This implies that y is x’s inorder successor from the original tree. It
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follows that y can have no left child in R′. To complete the operation, we simply link L
as the left child of R′.

Why are Splay Trees Great? Splay trees are amazing in the sense that they satisfy (at least
theoretically) many optimality properties, which none of the other search trees that we have
seen. Here is a partial list.

Balance Theorem: The cost of applying any sequence of m accesses (insert, delete, find)
on a splay tree with n elements is O(m log n + n log n)

Static Optimality Theorem: Let qx denote the number of times that an element x is
accessed in a sequence of m accesses to a splay tree. (Think of qx/m = px as an
empirical measure of the probability of accessing x.) Then the cost of performing these
accesses is

O

(
m +

∑
x

qx log
m

qx

)
.

The expression in the summation is the entropy of the access probability distribution,
and this is a theoretical lower bound on the performance of any decision-based data
structure.

Static Finger Theorem: Assume that the items are numbered 1 through n in ascending
order. Let f be any fixed element (the “finger”). Then the cost of performing any
sequence of operations is

O

(
m + n log n +

∑
x

log(|x− f |+ 1)

)
.

Intuitively, this says that the cost of any operation is the logarithm of the number of
elements between the accessed element and the finger.

Dynamic Finger Theorem: Assume that finger for each step in accessing an element y is
the location of element accessed in the previous step x. Then the cost of performing any
sequence of operations is

O

(
m + n log n +

∑
x,y

log(|y − x|+ 1)

)
.

Intuitively, this that if you start a search from some element y to another element x, the
cost of the operation is the log of the number of elements between them.

Working-Set Theorem: Each time an element x is accessed, let t(x) be the number of
elements that were accessed since x’s last access. Then the cost of performing the
sequence is

O

(
m + n log n +

∑
x

log(t(x) + 1)

)
.

Intuitively, this says that if we accessed an element t steps ago, then the time to access
it now is rougly log t.

Scanning Theorem: If each element of a splay tree is accessed in ascending (or descending)
order, the total time for all these accesses is O(n). (A naive bound would be O(n log n).)
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Why Splay Trees Work: (Optional) Sleator and Tarjan proved that, if you start with an empty
tree and perform any sequence of m splay tree operations (insert, delete, find), then the total
running time will be O(m log n), where n is the maximum number of elements in the tree at
any time. Thus the average time per operation is O(log n), as we would like. Their amortized
analysis involves a potential-based argument. We will sketch the idea without getting into the
details.

The intuition is to associate a potential with any tree. Intuitively, the potential is a value
that informs you how badly unbalanced the tree is. In financial terms, we think of potential
as money in a bank account. As it accrues, we can use it to pay for the cost of rebalancing
the tree. The argument relies on showing that no matter what sequence of operations occurs,
there is always a nonnegative potential (“money in the bank”). The amortized cost of any
operation is defined to be the sum of the actual cost of the operation (e.g., the number of
rotations performed) and the change in potential. The objective is to show that the amortized
cost of every operation is O(log n). Some operations may be very costly (e.g., splaying along
a path of length n), but the resulting decrease in the tree’s potential will be large enough to
compensate for this.

So, what is the potential function used for proving splay trees have good amortized perfor-
mance? First, for each node p of the tree, define size(p) to be the number of nodes in the
subtree rooted at p. Define rank(p) = lg size(p). Intuitively, the rank of a node is the “ideal
height” of this subtree in a perfectly balanced tree. The potential function of a tree is defined
to be

Φ(T ) =
∑
p∈T

rank(p) =
∑
p∈T

lg size(p).

The following is the key to the analysis. It bounds the amortized cost of each rotation
operation.

Rotation Lemma: Given any node p, let rank(p) and rank′(p) denote its rank before and
after applying a rotation step. The amortized cost of a zig rotation at p is at most
1 + 3(rank′(p)− rank(p)), and the amortized cost of a zig-zig or zig-zag rotation at any
node p is at most 3(rank′(p)− rank(p)).

(Partial) Proof: We will only prove the case of the zig-zig rotation. The other cases follow
by a similar sort of derivation, which we leave as an exercise.

To simplify notation, let’s write rank(x) as r(x) and size(x) and s(x). Suppose that
we perform a zig-zig rotation involving three nodes x, y, and z, as shown in Fig. 5(a)
(where x, y, and z play the roles of p, q, and r, respectively). Let r(x), r(y), and
r(z) denote the ranks of these items before the rotation, and let r′(x), r′(y), and r′(z)
denote these ranks after the rotation. The actual cost for the zig-zig is 2 rotations,
and since these are the only changes made in the tree, the change in potential is ∆Φ =
(r′(x) + r′(y) + r′(z))− (r(x) + r(y) + r(z)). Thus, the amortized cost of this operation
is

A = 2 + ∆Φ = 2 + (r′(x) + r′(y) + r′(z))− (r(x) + r(y) + r(z)).

Rearranging terms we have

A = 2 + (r′(x)− r(z)) + r′(y) + r′(z)− r(x)− r(y).

Observe that after the rotation x’s subtree is the same as z’s subtree before the rotation,
so r′(x) = r(z). Also, observe that before the rotation y’s subtree contains x’s subtree,
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so r(y) ≥ r(x) or equivalently −r(y) ≤ −r(x). After the rotation y’s subtree is contained
in x’s subtree, so r′(y) ≤ r′(x). Thus, we have

A ≤ 2 + 0 + r′(x) + r′(z)− r(x)− r(x) = 2 + r′(x) + r′(z)− 2r(x).

Next, we will employ an observation about the logarithm function. It is a concave
function, which implies that for any a and b, (lg a+lg b)/2 ≤ lg((a+b)/2). Also, observe
that s(x) + s′(z) ≤ s′(x). Using these and the fact that r(x) = lg s(x), we have

r(x) + r′(z)

2
=

lg s(x) + lg s′(z)

2
≤ lg

s(x) + s′(z)

2

≤ lg
s′(x)

2
= (lg s′(x))− 1 = r′(x)− 1.

This implies that r′(z) ≤ 2r′(x)− r(x)− 2. Plugging this in to our expression for A, we
have

A ≤ 2 + r′(x) + (2r′(x)− r(x)− 2)− 2r(x) ≤ 3r′(x)− 3r(x) ≤ 3(r′(x)− r(x)),

which is what we set out to prove. Whew!

It is rather difficult to see what the benefit of this symbol manipulation is, but the key is that
we have completely eliminated the +2 term in the zig-zig and zig-zag cases. This means that
we can perform any number of these and the only terms that accumulate will be of the form
r′(x)− r(x), which is just the potential change. By applying this all the way up the rotation
path, we obtain a telescoping series (and a final +1 for the last zig rotation). This implies
the following:

Splay Lemma: The amortized cost of a T.splay(p) is at most 1 + 3(rank(root)− rank(p)).

Since the rank of the root cannot exceed lg n and the rank of p is nonnegative, we immediately
have:

Corollary: The amortized cost of T.splay(p) is O(log n).

Finally, since each dictionary operation involves a constant number of splaying operations,
we obtain the final result.

Theorem: The amortized cost of each dictionary operation in a splay tree is O(log n).

Wow! That is one impressive bit of data structure analysis. You are not responsible for
knowing it, but this is great example of how amortized analyses are performed.
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