
CMSC 420 Dave Mount

CMSC 420: Lecture 15
Balancing by Rebuilding – Scapegoat Trees

Scapegoat Trees: We have previously studied the splay tree, a data structure that supports
dictionary operations in O(log n) amortized time. Recall that this means that, over a series of
operations, the average cost per operation is O(log n), even though the cost of any individual
operation can be as high as O(n). We will now study another example of a binary search tree
that has good amortized efficiency, called a scapegoat tree. The idea underlying the scapegoat
tree was due initially to Arne Anderson (of AA trees) in 1989. This idea was rediscovered by
Galperin and Rivest in 1993, who made some refinements and gave it the name “scapegoat
tree,” which we will explain below.1

Wreck it Ralph: While amortized data structures often interesting in their own right, there is a
particular motivation for studying the scapegoat tree. So far, all of the binary search trees
that we have studied achieve balance “incrementally” through the use of rotation operation.
Scapegoat trees are unique in that they do not rely on rotation. This is significant because
there exist binary trees that cannot be balanced through the use of rotations. (This is often
true of multidimensional data structures in geometry.) As we shall see, the scapegoat tree
achieves good balance in a very different way—when a subtree is imbalanced, it is tossed out
and rebuilt from scratch (or “wrecked and fixed”).

Below, we will discuss the details of how the scapegoat tree works. Here is a high-level
overview. A scapegoat tree is a binary search tree, which does not need to store any addi-
tional information in the nodes, other than the key, value, and left and right child pointers.
Nonetheless, the height of a tree with n nodes will always be O(log n). (Note that this is not
the case for splay trees, whose height can grow to as high as O(n).)

In an ideally balanced tree, each child has almost nearly exactly half as many nodes as its
parent. Define the size of a node to be the total number of nodes in its subtree. A node is
said to be weight balanced if the sizes of its two subtrees are within a constant fraction of
either other (e.g., split no worse than 1

3 · · ·
2
3). The scapegoat tree attempts to maintain this

property. Insertion and deletions work roughly as follows.

Insertion:

� The key is first inserted just as in a standard (unbalanced) binary tree

� We monitor the depth of the inserted node after each insertion, and if it is too high,
we can infer there must be at least one node on the search path that has poor weight
balance (that is, its left and right children have very different sizes).

� In such a case, we find such a node, called the scapegoat,2 and we completely rebuild
the subtree rooted at this node so that it is perfectly balanced.

Deletion:

� The key is first deleted just as in a standard (unbalanced) binary tree

� Once the number of deletions performed is sufficiently large relative to the entire
tree size, rebuild the entire tree so it is perfectly balanced.

1As you read further, you may wonder, “who would every think up such a weird data structure?” Keep in mind
that two different researchers came up with essentially the same idea independently!

2The colorful term “scapegoat” refers to an individual who is assigned the blame when something goes wrong. In
this case, the unbalanced node takes the blame for the tree’s height being too great.

Lecture 15 1 Spring 2021



CMSC 420 Dave Mount

Why the Asymmetry? You might wonder why there is a notable asymmetry between the re-
building rules for insertion and deletion. The existence of a single very deep node is proof
that a tree is out of balance. Thus, for insertion, we can use the fact that the inserted node is
too deep to trigger rebuilding. However, observe that the converse does not work for deletion.

The natural counterpart would be “if the depth of the leaf node containing the deleted key
is too small, then trigger a rebuilding operation.” But the fact that a single node has a low
depth, does not imply that the rest of the tree is out of balance. (It may just be that a single
search path has low depth, but the rest of the tree is perfectly balanced.)

Could we instead apply the deletion rebuilding trigger to work for insertion? Again, this
will not work. The natural counterpart would be, “given a newly rebuild tree with n keys,
we will rebuild it after inserting roughly n/2 new keys.” However, if we are very unlucky,
all these keys may fall along a single search path, and the tree’s height would be as bad as
O((log n) + n/2) = O(n), and this is unacceptably high.

How to Rebuild a Subtree: Before getting to the details of how the scapegoat tree works, let’s
consider the basic operation that is needed to maintain balance, namely rebuilding subtrees
into balanced form. We shall see that if the subtree contains n keys, this operation can be
performed in O(n) time (see Fig. 1). Letting p denote the root node of the subtree to rebuild,
call this function rebuild(p):

� Perform an inorder traversal of p’s subtree, copying the keys to an array A[0..k-1],
where k denotes the number of nodes in this subtree. Note that the elements of A are
sorted.

� Invoke the following recursive subtree-building function: buildSubtree(A)

– Let k = A.length.

– If k == 0, return an empty tree, that is, null.

– Otherwise, let x be the median key, that is, A[j], where j = bk/2c. Recursively in-
voke L = buildSubtree(A[0..j-1]) and R = buildSubtree(A[j+1..k-1]). Fi-
nally, create an internal node containing x with left subtree L and right subtree R.
Return a pointer to x.

Note that if A is implemented as a Java ArrayList, there is a handy function called sublist

for performing the above splits. The function is given in the code block below.

0 1 2 3 4 5

k = 6

j = bk/2c = 3

d
a b c d e f

0 1 2

a b c

0 1

e f

d

b

a c

f

e

A

A[0..j − 1]

A[j]

A[j + 1..k − 1]d

b

a c

f

e

Fig. 1: Recursively building a balanced tree from a sorted array of keys.

Ignoring the recursive calls, we spend O(1) time in each recursive call, so the overall time is
proportional to the size of the tree, which is k, so the total time is O(k).

Lecture 15 2 Spring 2021



CMSC 420 Dave Mount

Building a Balanced Tree from an Array
Node buildSubtree(Key[] A) { // A is a sorted array of keys

k = A.length

if (k == 0) return null // empty array

else {

j = floor(k/2) // median of the array

Node p = new Node(A[j]) // ...this is the root

p.left = buildSubtree(A[0..j-1]) // build left subtree recursively

p.right = buildSubtree(A[j+1..k-1]) // build right subtree recursively

return p // return root of the subtree

}

}

Scapegoat Tree Operations: In addition to the nodes themselves, the scapegoat tree maintains
two integer values. The first, denoted by n, is just the actual number of keys in the tree. The
second, denoted by m, is a special parameter, which is used to trigger the event of rebuilding
the entire tree.

In particular, whenever we insert a key, we increment m, but whenever we delete a key we
do not decrement m. Thus, m ≥ n. The difference m − n intuitively represents the number
of deletions. When we reach a point where m > 2n (or equivalently m− n > n) we can infer
that the number of deletions exceeds the number of keys remaining in the tree. In this case,
we rebuild the entire tree in balanced form.

We are now in a position to describe how to perform the dictionary operations for a scapegoat
tree.

find(Key x): The find operation is performed exactly as in a standard (unbalanced) binary
search tree. We will show that the height of the tree never exceeds log3/2 n ≈ 1.7 lg n,
so this is guaranteed to run in O(log n) time.

delete(Key x): This operates exactly the same as deletion in a standard binary search tree.
After deleting the node, decrement n (but do not change m). If m > 2n, rebuild the
entire tree by invoking rebuild(root), and set m← n.

insert(Key x, Value v): First, increment both n and m. We start by applying the inser-
tion process a standard (unbalanced) binary search tree. As we are tracing the search
path to the insertion point, keep track of our depth in the tree. (Recall that depth is
the number of edges to root.) If the depth of the inserted node exceeds log3/2m then
we trigger a rebuilding event. This involves the following:

� Walk back up along the insertion search path towards the root. Let p be the current
node that is visited, and let p.child be the child of p that lies on the search path.

� Let size(p) denote the size of the subtree rooted at p, that is, the number of nodes
in this subtree.

� If
size(p.child)

size(p)
>

2

3
,

then rebuild the subtree rooted at p by invoking rebuild(p). The node p is the
scapegoat.

An example of insertion is shown in Fig. 2. After inserting 5, the tree has n = 11 nodes.
The newly inserted node is at depth 6, and since 6 > log3/2 11 (which is approximately

Lecture 15 3 Spring 2021



CMSC 420 Dave Mount

5.9), we trigger the rebuilding event. We walk back up the search path. We find node 9
whose size is 7, but the child on the search path has size 6, and 6/7 > 2/3, so we invoke
rebuild on the node containing 9.

7

4

1

0

2

5

9

12

13

15

17

2
3

1
2

3
6

6
7 >

2
3!!

7

4

1

0 2 5 9

12

13

15

17

7

4

1

0

2

9

12

13

15

17

insert(5)

6 > log3
2
11 ≈ 5.9!!

rebuild(9)

Fig. 2: Inserting a key into a scapegoat tree, which triggers a rebuilding event. The node containing
9 is the first scapegoat candidate encountered while backtracking up the search path and is rebuilt.

Must there be a scapegoat? The fact that a child has over 2/3 of the nodes of the entire subtree
intuitively means that this subtree has (roughly) more than twice as many nodes as its sibling.
We call such a node on the search path a scapegoat candidate. A short way of summarize the
above process is “rebuild the scapegoat candidate that is closest to the insertion point.’

You might wonder whether we will necessarily encounter an scapegoat candidate when we
trace back along the search path. The following lemma shows that this is always the case.

Lemma: Given a binary search tree of n nodes, if there exists a node p such that depth(p) >
log3/2 n, then p has an ancestor (possibly p itself) that is a scapegoat candidate.

Proof: The proof is by contradiction. Suppose to the contrary that no node from p to the
root is a scapegoat candidate. This means that for every ancestor node u from p to the
root, we have size(u.child) ≤ 2

3 ·size(u). We know that the root has a size of n. It follows
that if p is at depth k in the tree, then

size(p) ≥
(

2

3

)k

n.

We know that size(p) ≥ 1 (since the subtree contains p itself, if nothing else), so it follows
that 1 ≥ (2/3)kn. With some simple manipulations, we have(

3

2

)k

≤ n,

which implies that k ≤ log3/2 n. However, this violates our hypothesis that p’s depth
exceeds log3/2 n, yielding the desired contradiction.

Recall that m ≥ n, and so if a rebuilding event is triggered, the insertion depth is at least
log3/2m, which means that it is at depth at least log3/2 n. Therefore, by the above lemma,
there must be a scapegoat candidate along the search path.

Lecture 15 4 Spring 2021



CMSC 420 Dave Mount

The Sizeless Size? We mentioned earlier that the scapegoat tree does not store any information
in the nodes other than the key, value, and left and right child pointers. So how can we
compute size(u) for a node u during the insertion process, without this information? There
is a clever trick for doing this on the fly.

Since we are doing this as we back up the search path, we may assume that we already know
the value of s′ = size(u.child), where this is the child that lies along the insertion search
path. So, to compute size(u), it suffices to compute the size of u’s other child. To do this,
we perform a traversal of this child’s subtree to determine its size s′′. Given this, we have
size(u) = 1 + s′ + s′′, where the +1 counts the node u itself.

You might wonder, how can we possibly expect to achieve O(log n) amortized time for inser-
tion if we are using brute force (which may take as much as O(n) time) to compute the sizes
of the subtrees? The reason is to first recall that we do not need to compute subtree sizes
unless a rebuild event has been triggered. Every node that we are visiting in the counting
process will need to be visited again in the rebuilding process. Thus, the cost of this counting
process can be “charged for” in the cost of the rebuilding process, and hence it essentially
comes for free!

Amortized Analysis: We will not present a formal analysis of the amortized analysis of the
scapegoat tree. The following theorem (and the rather sketchy proof that follows) provides
the main results, however.

Theorem: Starting with an empty tree, any sequence of m dictionary operations (find, insert,
and delete) to a scapegoat tree can be performed in time O(m logm). (Don’t confuse m
here with the m used in the algorithm.)

Proof: The proof is quite detailed, so we will just sketch the key ideas. In order for each
rebuild operation to be triggered, you need to perform a lot of cheap (rebuild-free)
operations to get into an unbalanced state. We will explain the results in terms of n,
the number of items in the tree, but note that m is generally larger.

Find: Because the tree’s height is at most log3/2m ≤ log3/2(2n) = O(log n) the costs
of a find operation is O(log n) (unconditionally).

Delete: In order to rebuild the entire tree due to deletions, at least half the entries
since the last full rebuild must have been deleted. (The value m− n is the number
of deletions, and a rebuild is triggered when m > 2n, implying that m−n > n.) By
token-based analyses, it follows that the O(n) cost of rebuilding the entire tree can
be amortized against the time spent processing the (inexpensive) deletions.

Insert: This is analyzed by a potential argument. This is complicated by the fact that
subtrees of various sizes can be rebuilt. Intuitively, after any subtree of size k is
rebuilt, it takes an additional O(k) (inexpensive) operations to force this subtree
to become unbalanced and hence to be rebuilt again. We charge the expense of
rebuilding to against these “cheap” insertions.

Lecture 15 5 Spring 2021


