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2D homography (projective transformation)

Definition Line

: / preservin
A 2D homography is an invertible mapping h from P2 to g

itself such that three points X,,X,,X; lie on the same

line if and only if h(x,),h(X;),h(X3) do.

Theorem:

A mapping h: P2—P2 is a homography if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 represented by a vector X it is true that h(x)=Hx

Definition: Homography
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Homography=projective
transformation=projectivity=collineation



General homography

Note: homographies are not restricted to P2

General definition:

A homography is a non-singular, line
preserving, projective mapping h: Pn —Pn,
It is represented by a square (n + 1)-dim
matrix

with (n + 1)2-1 DOF
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Homographies Iin
Computer visio

Rotating/translating camera, planar
world

X X
(x,0,1) =xoc PX = K|[rira] ( § ) = H[Y ]
1 |

What happens to the P-matrix, if Z is assumed
zero?
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Homographies In
Computer visior

Rotating camera, arbitrary
world
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What happens to the P-matrix, if t is assumed
zero?



To unwarp (rectify) an image
 solve for homography H given p and p’
» solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H

— His defined up to an arbitrary scale factor
— how many points are necessary to solve for H?



Solving for homographies
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Solving for homographies

hoo
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- These equations ate linear in the elements of H

- Four point correspondences lead to eight such linear
equations

- These are sufficient to solve for H.
- Condition: No three points should be collinear.



Solving for homographies

hoo
] _ | ho1 o
z1 y1 1 0 0 O —ahwy —ahyr —2) || hoo 0
O O O 21 y1 1 —y’lxl —y’lyl —yll hio 0
; hir | = | ¢
Tn yn 1 0 0 O —alxn, —zlyn —a) h1s 0
| 0 0 0 @n yn 1 —ypan —uynyn —uh | | oo | O]
h21
| 22 |
A h 0
2nx9 9 2n

Linear least squares
» Since h is only defined up to scale, solve for unit vector h
 Minimize ||AL|?
|AL||? = (Ah)’ Ah = h' AT Ah
- Solution: h = eigenvector of ATA with smallest eigenvalue
 Works with 4 or more points



Inhomogeneous solution

Since h can only be computed up to scale,
impose constraint pick h;=1, e.g. hy=1, and
solve for 8-vector

'

|-O 0 0 —xw," —yw' —ww' Xy yiyi'-lN /_Wiyi'\

|_XiWi Yiw;i Wi Wi 0 0 0 xixi' yixi"'h =h wixi' V

Can be solved using linear least-
squares

However, if hy=0 this approach
fails Also poor results if hg close

to zero Therefore, not
recommended



Feature matching
'-’f’j’-‘t \ | 7

descriptors for left image feature points descriptors for right image feature points
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SIFT features

« Example

(a) 233x189 image

(b) 832 DOG extrema

(c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures
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Strategies to match images robustly

(a)Working with individual features: For each feature point,
find most similar point in other image (SIFT distance)

Reject ambiguous matches where there are too many similar points

(b)Working with all the features: Given some good feature
matches, look for possible homographies relating the two
1mages

Reject homographies that don 't have many featurematches.



(a) Feature-space outlier rejection

 Let’s not match all features, but only thesethat
have “similar enough ” matches?

« How can we do it?
— SSD(patchl,patch2) < threshold
— How to set threshold?
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Feature-space outlier rejection

* A better way [Lowe, 1999]:
— 1-NN: SSD of the closest match
— 2-NN: SSD of the second-closest match
— Look at how much better 1-NN 1is than 2-NN, e.g. 1-NN/2-NN
— That 1s, 1s our best match so much better than the rest?
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RAndom SAmple Consensus

Select one match, count inliers




RANSAC for estimating homography

RANSAC loop:
Select four feature pairs (at random)

Compute homography H (exact)

Compute inliers where ||p.’, Hp,|| <e
Keep largest set of inliers

Re-compute least-squares H estimate using all of
the inliers



