SUPPORT VECTOR MACHINES
Find a linear hyperplane (decision boundary) that will separate the data
One possible solution
SUPPORT VECTOR MACHINES

Other possible solutions
Which one is better? B_1 or B_2? ???????????
How do you define better? ????????????
Find hyperplane \textit{maximizes} the margin \(\Rightarrow B_1 \) is better than \(B_2 \).
SUPPORT VECTOR MACHINES

\[\vec{w} \cdot \vec{x} + b = 0 \]
\[\vec{w} \cdot \vec{x} + b = -1 \]
\[\vec{w} \cdot \vec{x} + b = +1 \]

\[f(x) = \begin{cases}
1 & \text{if } \vec{w} \cdot \vec{x} + b \geq 1 \\
0 & \text{if } \vec{w} \cdot \vec{x} + b \leq -1
\end{cases} \]

Margin = \frac{2}{||\vec{w}||^2}
SUPPORT VECTOR MACHINES

We want to maximize: \[\text{Margin} = \frac{2}{||\vec{w}||^2} \]

Which is equivalent to minimizing: \[L(w) = \frac{||\vec{w}||^2}{2} \]

But subject to the following constraints:

\[\vec{w} \cdot \vec{x} + b \geq 1 \text{ if } y_i = 1 \]
\[\vec{w} \cdot \vec{x} + b \leq -1 \text{ if } y_i = -1 \]

This is a constrained optimization problem
• Numerical approaches to solve it (e.g., quadratic programming)
SUPPORT VECTOR MACHINES

What if the problem is not linearly separable?

\[\frac{\xi_i}{\|w\|} \]

Apply some sort of penalty
SUPPORT VECTOR MACHINES

What if the problem is not linearly separable?
- Introduce slack variables
- Need to minimize:

\[L(w) = \frac{||w||^2}{2} + C \left(\sum_{i=1}^{N} \xi_i^K \right) \]

- Subject to:

\[
\begin{align*}
\mathbf{w} \cdot \mathbf{x} + b & \geq 1 - \xi_i \text{ if } y_i = 1 \\
\mathbf{w} \cdot \mathbf{x} + b & \leq -1 + \xi_i \text{ if } y_i = -1
\end{align*}
\]
NONLINEAR SUPPORT VECTOR MACHINES

What if the decision boundary is not linear?
NONLINEAR SUPPORT VECTOR MACHINES

Transform data into higher dimensional space
Lots of defaults used for hyperparameters – can use cross validation to search for good ones
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

... Load some raw data into X and y ...
Split the dataset in two equal parts
X_train, X_test, y_train, y_test = \
 train_test_split(X, y, test_size=0.5, random_state=0)

Pick values of hyperparameters you want to consider
tuned_parameters = [
 {'kernel': ['rbf'],
 'gamma': [1e-3, 1e-4],
 'C': [1, 10, 100, 1000]},
 {'kernel': ['linear'],
 'C': [1, 10, 100, 1000]}
]
Perform a complete grid search + cross validation
for each of the hyperparameter vectors
clf = GridSearchCV(SVC(C=1),
 tuned_parameters,
 cv=5,
 scoring='precision')
clf.fit(X_train, y_train)

Now that you’ve selected good hyperparameters via CV,
and trained a model on your training data, get an
estimate of the “true error” on your test set
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))