Bag of Visual Words

Thanks to Svetlana Lazebnik and Andrew Zisserman for the use of some slides

How many categories?

10,000-30,000

History

1960s – early 1990s: geometry

1990s: appearance

Mid-1990s: sliding window

Late 1990s: local features

Early 2000s: parts-and-shape models

Mid-2000s: bags of features

Present trends: data-driven methods, context

Local features

D. Lowe (1999, 2004)

RECOGNITION AS AN APPLICATION OF MACHINE LEARNING

Common recognition tasks

Image classification

Image tagging

Object detection

Activity recognition

Image parsing

Image description

Image classification

Steps

Slide credit: D. Hoiem

Traditional recognition pipeline

- Features are not learned
- Trainable classifier is often generic (e.g. SVM)

Bags of features

Bags of features: Motivation

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Representing a document "in math"

Simplest method: bag of words

Represent each document as a vector of word frequencies

Order of words does not matter, just #occurrences

Bag of words Example

I am he as you are he as you are me he said the CMSC320 is 189 more CMSCs than the CMSC131

the	CM SC3 20	you	he		quic k	dog	me	CM SCs		than
2	0	0	0	0	1	1	0	^	•••	0
		<u> </u>	<u> </u>		<u> </u>	l ————	<u> </u>			<u> </u>
0	0	2	2	1	0	0	1	0		0
2	1	0	1	0	0	0	0	1		1

Document 1
Document 2
Document 3

Term Frequency

Term frequency: the number of times a term appears in a specific document

- tf_{ij}: frequency of word j in document i
 - This can be the raw count (like in the BOW in the last slide):
- $tf_{ij} \in \{0,1\}$ if word j appears or doesn't appear in doc i
- log(1 + tf_{ii}) reduce the effect of outliers
- tf_{ij} / max_j tf_{ij} normalize by document i's most frequent word
 - What can we do with this?
- Use as features to learn a classifier w → y …!

Defining features From Term Frequency

Suppose we are classifying if a document was written by The Beatles or not (i.e., binary classification):

• Two classes $y \in Y = \{0, 1\} = \{\text{not_beatles}, \text{beatles}\}$ Let's use $tf_{ij} \in \{0, 1\}$, which gives:

	the	CMS C320	you	he	I	quick	dog	me	CMS Cs	than
$\mathbf{x}_1^T =$	1	0	0	0	0	1	1	0	0	0
$\mathbf{x}_2^T =$	0	0	1	1	1	0	0	1	0	 0
$\mathbf{x}_3^{T} =$	1	1	0	1	0	0	0	0	1	1

$$y_1 = 0$$

$$y_2 = 1$$

$$y_3 = 0$$

Then represent documents with a feature function:

$$f(x, y = not_beatles = 0) = [x^T, 0^T, 1]^T$$

 $f(x, y = beatles = 1) = [0^T, x^T, 1]^T$

Linear classification

We have a feature function f(x, y) and a score $\psi_{xy} = \theta^T f(x, y)$

Texture recognition

Julesz 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Traditional features: Bags-of-features

- Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

1. Local feature extraction

Sample patches and extract descriptors

Keypoints

patches surrounding keypoints

2. Learning the visual vocabulary

2. Learning the visual vocabulary

2. Learning the visual vocabulary

Example visual vocabulary

Bag-of-features steps

- Extract local features
- Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

CLUSTERING

Group a collection of points into clusters

• We have seen "supervised methods", where the outcome (or response) is based on various predictors.

• In clustering, we want to extract patterns on variables without analyzing a specific response variable.

This is a form of "unsupervised learning"

CLUSTERING

• The points in each cluster are closer to one another and far from the points in other clusters.

Data Points

• Each of the data points belong to some n-dimensional space.

Clusters

- The clusters are grouped based on some distance /similarity measurement.
- Two-main types of clustering techniques are:
 - point-assignment or k-means
 - · hierarchical or agglomerative
- Sometimes we work with dissimilarity (or distance) measurements.
- First let us discuss the (dis)similarity measurements.

dissimilarity measurements

Given measurements x_{ij} for i = 1,...,M observations over j = 1,...,n predictors.

Define dissimilarity, $d_j(x_{ij}, x_{i'j})$

We can define dissimilarity between objects as

$$d(x_i, x_{i'}) = \sum_{j=1}^{N} d_j(x_{ij}, x_{i'j})$$

• The most common distance measure is squared distance

$$d_j(x_{ij}, x_{i'j}) = (x_{ij} - x_{i'j})^2$$

dissimilarity measurements

Absolute difference

$$d_j(x_{ij}, x_{i'j}) = |x_{ij} - x_{i'j}|$$

For categorical variables, we could set

$$d_j(x_{ij}, x_{i'j}) = 0 \text{ if } x_{ij} = x_{i'j}$$

1 otherwise

Clustering techniques

- Two-main types of clustering techniques are:
 - point-assignment or k-means
 - hierarchical or agglomerative

K-Means Clustering

- A commonly used algorithm to perform clustering
- Assumptions:
 - Euclidean distance,

$$d_{ii'} = d(x_i, x_{i'}) = \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 = ||x_i - x_{i'}||^2$$

 K-means partitions observations into K clusters, with K provided as a parameter.

K-Means Objective function

• We are given an integer k and a set of n data points $X \subset \mathbb{R}^p$

we wish to choose *k* centers *C* so as to minimize within-cluster dissimilarity.

$$W = \sum_{i=1}^{N} \min_{c \in C} ||x_i - c||^2$$

 The criteria to minimize is the total distance given by each observation to the mean(centroid) of the cluster to which the observation is assigned.

K-Means - Iterative algorithm

1. Arbitrarily choose an initial *k* centers

$$C = \{c_1, c_2, ..., c_k\}$$

- 2. For each $i \in \{1,...,k\}$ set the cluster C_i to be the set of points X that are closer to c_i than they are to c_j for all $j \neq i$
- 3. For each $i \in \{1,\ldots,k\}$, set c_i to be the center of mass of all points in C_i : $c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$
- 4. Repeat Steps 2 and 3 until C no longer changes

K-means - picking K

- Minimization, W, It is not a convex criteria, we may not obtain global optima.
- In practice the algorithm is run with multiple initializations (step 1) and the best clustering is used.

Choosing the number of clusters

- 1. The number of parameters must be determined before running k-means algorithm.
- 2. There is no clean direct method for choosing the number of clusters to use in the K-means algorithm

Choosing the number of clusters - Elbow method

Picking k - Gap statistic (Hastie et al.)

https://statweb.stanford.edu/~gwalther/gap

• Suppose data is clustered into k clusters, $C_1, C_2, ..., C_k$

with C_r denoting the observations in cluster r, and $n_r = |C_r|$

• The sum of pairwise distances for all points in cluster r is given by $D_r = \sum_{i:i' \in C} d_{ii'}$ $d_{ii'} = d(x_i, x_{i'}) = \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = ||x_i - x_{i'}||^2$

and
$$W_k = \sum_{r=1}^{i,i' \in C_r} \frac{1}{2n_r} D_r$$

• If d is the squared Euclidean distance then W_k is the pooled within-cluster sum of squares around the cluster means.

Gap Statistic - Procedure (Tibshirani et al.)

- 1. Cluster the observed data, varying the total number of clusters from $k=1,2,\ldots,K$. Obtain W_k
- 2. Generate B reference sets, using uniform distribution or SVD followed by uniform distribution. W_{kh}^* , with $b=1,2,\ldots,B, k=1,2,\ldots,K$
- 3. Compute the estimated Gap statistic $Gap(k) = (1/B) \sum_{k} log(W_{kb}^*) log(W_k)$
- 4. Let $\bar{l}=(1/B)\sum_b log(W_{kb}^*)$, compute the standard deviation $sd_k=[(1/B)\sum_b^b \{log(W_{kb}^*)-\bar{l}\}^2]^{1/2}$
- 5. Define $s_k = sd_k \sqrt{1 + 1/B}$.
- 6. Choose the number of clusters via $\hat{k} = \text{smallest } k \text{ such that } Gap(k) \geq Gap(k+1) s_{k+1}$

Choosing the number of clusters - Gap statistic

$$Gap(k) = E[log(W_{kb}^*)] - log(W_k)$$

$$E[log(W_{kb}^*)] = \bar{l} = (1/B) \sum_{b} log(W_{kb}^*)$$

Choosing the number of clusters - Elbow method

Choosing the number of clusters - Gap statistic

Traditional features: Bags-of-features

- Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

1. Local feature extraction

Sample patches and extract descriptors

Keypoints

patches surrounding keypoints

2. Learning the visual vocabulary

2. Learning the visual vocabulary

2. Learning the visual vocabulary

Example visual vocabulary

Bag-of-features steps

- Extract local features
- Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

Bag-of-features (Visual Words) steps

Generalization

- Generalization refers to the ability to correctly classify never before seen examples
- Can be controlled by turning "knobs" that affect the complexity of the model

Training set (labels known)

Test set (labels unknown)

Diagnosing generalization ability

- Training error: how does the model perform on the data on which it was trained?
- Test error: how does it perform on never before seen data?

Underfitting and overfitting

- Underfitting: training and test error are both high
 - Model does an equally poor job on the training and the test set
 - Either the training procedure is ineffective or the model is too "simple" to represent the data
- Overfitting: Training error is low but test error is high
 - Model fits irrelevant characteristics (noise) in the training data
 - Model is too complex or amount of training data is insufficient

Effect of training set size

Validation

- Split the data into training, validation, and test subsets
- Use training set to optimize model parameters
- Use validation test to choose the best model
- Use test set only to evaluate performance

Summary

