Least Squares Optimization

First some more Linear Algebra

L2 Norm:
$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

L1 Norm: $||x||_1 = \sqrt{\sum_{i=1}^n |x_i|}$

Infinity norm: $||x||_{inf} = max_i|x_i|$

General P Norm:
$$||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$$

Matrix Norm:
$$||x||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m A_{ij}^2} = \sqrt{tr(A^T A)}$$

Inner or dot product

- $x \cdot y = ||x||||y||cos\theta$
- If y is a unit vector then $x \cdot y$ gives the length of x which lies in the direction of y

$$x^T y = x \cdot y = \begin{bmatrix} x_1 \dots x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$

Matrix Rank

- col-rank(A) = maximum number of linearly independent column vectors of A
- row-rank(A) = maximum number of linearly independent row vectors of A. Column rank always equals row rank
- For transformation matrices, the rank tells you the dimensions of the output.

for instance, if rank of A is 1, then the transformation p' = Ap points onto a line.

• Full rank matrix - if A is m x m and rank is m

Vector spaces

- It is a generalization of the cartesian plane.
 - A cartesian plane is a set of all points (x,y), where x and y are real numbers
- In Computer Science points (x,y) can be thought of as numeric arrays of size 2.
- We can have a set of numeric arrays of size d, denoted as \mathbb{R}^d

 $\mathbb R$ denotes that each array is composed of real numbers, d denotes the number of components in each array

• Each element in \mathbb{R}^d is represented as $[x_1, x_2, ..., x_d]$

Vector spaces - Matrices

- An $n \times m$ matrix has n rows and m columns.
- A set of all $n \times m$ matrices, can be denoted as $\mathbb{R}^{n \times m}$ and is a vector space

• Point (x, y) on the cartesian plane can be thought of as "x units along x-axis and y units along y-axis"

(x, y) = x(1, 0) + y(0, 1)

Any vector, \mathbf{v} , in the cartesian plane \mathbb{R}^2 can be represented as a linear combination of only two vectors, (1,0) and (0, 1).

• In vector space \mathbb{R}^d , consider the vectors $e_1 = [1,0,0,...,0]$, $e_2 = [0,1,0,...,0]$, $e_3 = [0,0,1,...,0]$ and so on.

 e_i has 1 in the *i*-th position and 0 everywhere else.

• Any vector, $\mathbf{v} = [x_1, x_2, ..., x_d]$, then $\mathbf{v} = \sum_i x_i e_i$, can be represented as a linear combination of basis vectors, e_i 's.

- Vector space of all $n \times m$ images, $\mathbb{R}^{n \times m}$ Every element in this vector space is an $n \times m$ matrix.
- The matrix e_{ii} has a 1 in the (i, j)-th position and is zero everywhere else.

Then any vector
$$\mathbf{v} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nm} \end{bmatrix}$$
 in $\mathbb{R}^{n \times m}$ can be written as $\sum_{i,j} x_{ij} e_{ij}$

• Set of vectors $B_2 = \{(1,0), (0,1)\}$ in \mathbb{R}^2 , the set

$$B_d = \{e_i; i = 1, ..., d\}$$
 in \mathbb{R}^d and the set

$$B_{n \times m} = \{e_{ij}; i = 1, ..., n; j = 1, ..., m\}$$
 in $\mathbb{R}^{n \times m}$ are special.

• Definition: Let *V* be a vector space, and suppose $U \subset V$. Then a vector $\mathbf{v} \in V$ is said to be in the span of *U* if it is a linear combination of the vectors in *U*, that is, if $\mathbf{v} = \sum_{i=1}^{n} \alpha_{i} u_{i}$ for some $\mathbf{u}_{i} \in U$ and some scalars α_{i} . The span of *U* is the set of all such vectors \mathbf{v} which can be expressed as linear combinations of vectors in *U*

In \mathbb{R}^2 , the span of the set $B_2 = (0,1), (1,0)$ is all of \mathbb{R}^2 , since every vector in \mathbb{R}^2 can be expressed as a linear combination of vectors in B.

• Definition: Let *V* be a vector space. A set of vectors $U = \mathbf{u}_1, ..., \mathbf{u}_n \subset V$ is linearly depended if there exist scalars $\alpha_1, \alpha_2, ..., \alpha_n$, not all of them 0, such that $\sum_{i=1}^n \alpha_i u_i = \mathbf{u}$. If no such α_i 's exist, then the set of vectors is *U* is linearly

independent.

For example, the set (1,0), (0,1), (1, -1). Then, because (1,0) - (0,1) - (1, -1) = 0This set is linearly dependent.

• Another equivalent definition for a linearly independent set is that no vector in the set is a linear combination of the others.

Basis

- Let V be a vector space. A set of vectors $U \subset V$ is a basis for V if:
 - The span of U is V, that is, every vector in V can be written as a linear combination of vectors from U, and
 - U is linearly independent.

thus B_2 is a basis for \mathbb{R}^2 , B_d is the basis for \mathbb{R}^d and $B_{n \times m}$ is a basis for $\mathbb{R}^{n \times m}$

** Note that a given vector space can have more than a single basis. For example $B'_2 = (0,1), (1,1)$ is also a basis for \mathbb{R}^2 , however, all basis sets for a vector space have the same number of elements

The number of elements in a basis for a vector space is called the dimensionality of the vector space.

Linear Transformation

• A function $f: U \to V$ is a linear transformation if $f(\alpha \mathbf{u}_1 + \beta \mathbf{u}_2) = \alpha f(\mathbf{u}_1) + \beta f(\mathbf{u}_2)$ for all scalars α, β and for all $\mathbf{u}_1, \mathbf{u}_2 \in U$

Suppose we have fixed a basis $B_U = b_1, ..., b_m$ for U, and a basis $B_V = a_1, ..., a_n$ for V

$$f(b_j) = \sum_{i=1}^{n} M_{ij} a_i$$
 for some coefficients M_{ij}

Consider an arbitrary vector u.

It can be expressed as a linear combination of the basis vectors, so

u =
$$\sum_{j=1}^{m} u_j b_j$$
, therefore
 $f(u) = f(\sum_{j=1}^{m} u_j b_j) = \sum_{j=1}^{m} u_j f(b_j) = \sum_{j=1}^{m} \sum_{i=1}^{n} M_{ij} u_j a_i$

Every linear transformation can be expressed as matrix multiplication.

Single Variable Linear Regression

estimate $\hat{y}_i = \theta_0 + \theta_1 x_i$ Х y Price (in 1000\$) Area(sq. ft.) 1600 220 1400 180 2100 350 2400 500

LINEAR REGRESSION

ESTIMATING PARAMETERS: LEAST SQUARES METHOD

Plot all (X_i, Y_i) pairs, and plot your learned model

How would you draw a line through the points? How do you determine which line "fits the best" ...? ?????????

How would you draw a line through the points? How do you determine which line "fits the best" ?????????

Slope changed

Intercept unchanged

How would you draw a line through the points? How do you determine which line "fits the best" ?????????

Intercept changed

How would you draw a line through the points? How do you determine which line "fits the best" ?????????

Slope changed

Intercept changed

Best fit: difference between the true (observed) Y-values and the estimated Y-values is minimized:

- Positive errors offset negative errors ...
- ... square the error!

$$\sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{n} \epsilon_i^2$$

Least squares minimizes the sum of the squared errors

LEAST SQUARES, GRAPHICALLY LS Minimizes $\sum_{i=1}^{n} \epsilon_i^2 = \epsilon_1^2 + \epsilon_2^2 + \ldots + \epsilon_n^2$

Single Variable Linear Regression

estimate $\hat{y}_i = \theta_0 + \theta_1 x_i$

X	У
Area(sq. ft.)	Price (in 1000\$)
1600	220
1400	180
2100	350
2400	500

MULTIVARIATE REGRESSION

Multi Linear Regression

 $\hat{y}_i = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_m x_{im}$

У	x_1	x_2	x_3
Price (in 1000\$)	Area(sq. ft.)	# Bathrooms	# Bedrooms
220	1600	2.5	3
180	1400	1.5	3
350	2100	3.5	4
500	2400	 4	 5

MULTIVARIATE REGRESSION

Multi Linear Regression

$$\hat{y}_i = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_m x_{im}$$

Price (in 10	000\$)	Area(sq. ft.))	# Bathrooms	# Bedroo	oms		
22	0	1600		2.5	3			
y _i 18	0	1400		1.5	3			
35	0	2100		3.5	4			
•••							x _i	
50	0	2400		4	5	14	400	x_i

 x_{i2}

 x_{i3}

1.5

3

MULTIVARIATE REGRESSION

Multi Linear Regression

У	x_0	x_1	x_2	x_3		
Price (in 1000\$)		Area(sq. ft.)	# Bathrooms	# Bedrooms	>	
220	_1	1600	2.5	3	_	
y i 180	1	1400	1.5	3		
350	1	2100	3.5	4	x_i	
				[1	x_{i0}
500	1	2400	4	5	1400	<i>x</i> _{<i>i</i>1}
			•	· [1.5	x_{i2}

 x_{i3}

3

MULTIVARIATE REGRESSION MODEL

Model:

$$\hat{y}_i = \theta_0 x_{i0} + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_m x_{im}$$
$$\hat{y}_i = \sum_{j=0}^m \theta_{ij} x_{ij}$$

feature $1 = x_0 \dots$ (constant, 1) feature $2 = x_1 \dots$ (area, sq. ft.) feature $3 = x_2 \dots$ (# of bedrooms) feature $4 = x_3 \dots$ (# of bathrooms)

 \dots feature m = x_m

SINGLE VARIABLE LINEAR REGRESSION

Area (sq. ft)

INTERPRETING COEFFICIENTS $\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 x_1 + \hat{\theta}_2 x_2$

Two Linear Features

fix (£) evidence (£) fix (£) for the formation of the for

INTERPRETING COEFFICIENTS

ONE OBSERVATION MODEL

Matrix NotationFor observation i $\hat{y}_i = \sum_{i=1}^{m} \theta_{ij} x_{ij}$

$$J=0$$

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & X_{i1} & X_{i2} & \dots & X_{im} \end{array} \end{array} \begin{array}{c} & & \\ & &$$

 θ_m

$$y_i = X_i^T \theta$$

Xio

 $y_i =$

ALL OBSERVATION MODEL

Matrix Notation For all observations

X 10	X 11	X 12	 	X _{1m}	θ_0			
X 20	X 21	X 22	 	X _{2m}	$ heta_1$			
X 30	X 31	X 32	 	X _{3m}	θ_2		=	
	-		-					
					θ_m	Į.		
								Γ
X _{n0}	X _{n1}	X _{n2}	 	X nm				

LEAST SQUARES OPTIMIZATION

Rewrite optimization problem:

$$\text{minimize}_{\theta} \ \frac{1}{2} \| X \theta - y \|_2^2$$

*Recall
$$||z||_2^2 = z^T z = \sum_i z_i^2$$

LEAST SQUARES OPTIMIZATION

ERROR FUNCTION

GRADIENTS

Minimizing a multivariate function involves finding a point where the gradient is zero:

$$abla_{\theta} f(\theta) = 0$$
 (the vector of zeros)

Points where the gradient is zero are local minima

- If the function is convex, also a global minimum Let's solve the least squares problem!
 We'll use the multivariate generalizations of some concepts from MATH141/142 ...
- Chain rule: $\nabla_{\theta}f(X\theta) = X^T\nabla_{X\theta}f(X\theta)$
- Gradient of squared ℓ^2 norm: $\nabla_{\theta} ||\theta z||_2 = 2(\theta z)$

LEAST SQUARES

Recall the least squares optimization problem: $\label{eq:minimize} \min \\ \theta \ \frac{1}{2} \| X \theta - y \|_2^2$

 $\begin{aligned} & \text{What is the gradient of the optimization objective ???????} \\ & \nabla_{\theta} \frac{1}{2} \| X \theta - y \|_2^2 = & \begin{array}{c} \text{Chain rule:} \\ & \nabla_{\theta} f(X \theta) = X^T \nabla_{X \theta} f(X \theta) \\ & \text{Gradient of norm:} \\ & \nabla_{\theta} \| \theta - z \|_2^2 = 2(\theta - z) \end{aligned}$

$$\nabla_{\theta} \frac{1}{2} \| X\theta - y \|_2^2 = X^T (X\theta - y)$$

LEAST SQUARES

Recall: points where the gradient equals zero are minima.

$$\nabla_{\theta} \frac{1}{2} \| X\theta - y \|_2^2 = X^T (X\theta - y)$$

So where do we go from here??????? $X^{T}(X\theta - y) = 0$ Solve for model parameters θ $X^{T}X\theta - X^{T}y = 0 \Rightarrow X^{T}X\theta = X^{T}y$ $(X^{T}X)^{-1}X^{T}X\theta = (X^{T}X)^{-1}X^{T}y$ $\theta = (X^{T}X)^{-1}X^{T}y$